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SUMMARY 

Global finite element modeling of pipe lateral buckling due to thermal expansion is usually 
performed with beam-type elements to represent the pipe, and a Coulomb frictional model 
to represent the interaction between the pipe and the seabed.  According to such frictional 
models the highest strains due to lateral buckling occur when the pipe is first heated.  
Subsequent cycles increase the amplitude of the buckle, but also the wavelength of the 
buckle, so that the maximum curvature, the maximum strains, and the stress ranges 
decrease for subsequent cycles.  However in reality soil berms tend to form when the pipe 
buckles laterally.  Upon cooling, these soil berms remain in place following the profile of 
the buckled pipeline when it was first heated.  As a result, upon subsequent cycles the pipe 
will tend to adopt a shape similar to that at the first cycle.  This has a significant impact on 
the stress ranges for low cycle fatigue analysis.  For this reason a model is developed that 
explicitly accounts for berm formation, and can track the formation and location of any 
number of berms (up to a user-specified maximum number).  Both formation as well as 
coalescence of berms is modeled.  The model is 2-dimensional in that all pipe deformations 
take place in the horizontal plane. 

By including an initial berm, the berms model can also be used to model an initial higher 
break-out resistance due to embeddment of the pipe. 

The berms model includes considerable flexibility in describing the evolution of berm 
volume with pipe displacement, and the relationship between berm resistance and berm 
volume.  These relationships are described by linear interpolation between any number of 
user-specified points.  Coalescence of berms is accounted for by adding the volumes of the 
coalescing berms. 

The berms model is complemented by an anisotropic frictional model for the frictional 
component of the resistance.  This allows different friction coefficients to be specfied in 
the lateral and axial directions.  It also allows coupled or uncoupled behaviour to be 
modeled for the axial and lateral directions.  For the coupled model an elliptical slip surface 
is constructed which is treated very much like a yield surface in plasticity theories, which 
the direction of slip being normal to the slip surface as for associated plastic flow in 
plasticity theories. 

Both the berms model and the anisotropic frictional model have been adapted so that they 
can be used as a user-subroutine in the ABAQUS commercial general purpose finite 
element analysis program.  An example shows good agreement between the results 
calculated with ABAQUS and those from the program (NPEX) for which the models were 
first developed.  Instructions for use of these models within ABAQUS are included. 
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1. INTRODUCTION 

Lateral buckling of pipelines can be a cost-effective way to accommodate thermal 
expansion and limit the expansion at the ends of pipelines (affecting spools or jumpers), 
especially in subsea pipelines, where burial for protection and/or insulation is not required.  
However one must ensure that the bending moments and curvatures due to such lateral 
buckling are not excessive, so that local buckling/wrinkling of the pipe wall, and/or 
fracture at a girth weld is avoided.  This has already lead to failures of at least 2 (non-Shell) 
pipelines.  Therefore a realistic modelling capability for lateral buckling is essential in order 
to correctly quantify the risk that lateral buckles become over-stressed.  Yet it has been 
found by the authors that the pipe-soil interaction element in ABAQUS does not properly 
or fully describe the pipe-soil interaction mechanism.  In order to overcome this difficulty, 
a user subroutine is developed in this study to account for different resistances in the axial 
and lateral directions, as well as the interaction between these two directions.   

Another important aspect of the soil resistances to lateral buckling is the formation of soil 
berms.  Lateral movement of a pipeline lying on a seabed (as a result of lateral buckling or 
subsequent motion) causes the formation and growth of a soil berm on one side of a 
pipeline.  Such berms not only increase the resistance to lateral movements, but also affect 
the cyclic response in a way that tends to increase the stress range due to shut-down and 
restart cycles.  Therefore it was decided during the course of the work to add the modelling 
of berms to the scope.  The model developed also allows an initial berm to be used to 
represent embeddment and initial break-out of the pipe.   

When a pipline buckles laterally on a sandy or clayey seafloor, it tends to push some soil 
laterally, which forms a berm against the pipeline, thereby increasing the resistance to 
lateral movement.  Upon cooling the line will tend to pull back from the berm, but at the 
next heating cycle there is an increase in resistance when the pipe encounters the berm.  
Thus on the 2nd and subsequent heating cycles, the berm tends to make the pipe into the 
same shape to which it has buckles at the 1st cycle.   This behaviour differs from that for a 
purely frictional seafloor, with no berm formation, where the maximum lateral 
displacement at the buckle tends to grow with additional cycles, but the peak bending 
moment decreases.   

Although berm formation could also be accounted for by using higher effective friction 
factors, a proper model for berm formation has the following advantages: 

1. For fatigue analyses the berms model gives a much more realistic representation of 
the stress histories.  Using a purely frictional model with an equivalent friction 
factor gives non-conservative results because: 

a. The decrease in peak bending moment for subsequent cycles that is 
predicted by the purely frictional model does not materialise because berms 
tend to make the pipe deform at each cycle into the same shape as for the 
first cycle. 

b. The equivalent fricitonal model will tend to over-estimate the soil resistance 
to pull back of the pipe upon cooling. 

2. A number of cycles at a lower temperature, followed by a higher temperature, can 
cause increased peak bending moments, as the pipe wants to break through the 
berm built up in the previous cycles.  This can be important for design, and can 
only be predicted by modeling the berm formation. 
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3. By modeling initial embeddment as initial berms, the additional break out resistance 
due to embeddment can be modeled.  This can have a significant effect on the 
buckling mode (favouring a single lobe mode rather than a 3-lobe mode, as in 
Kerr’s mode 3), and resulting in higher peak bending moments.  Not modeling the 
berm can be non-conservative. 

The proposed model explicitly accounts for the presence of berms.  Depending on the 
displacement history, any number of berms can form.  In general a change in the direction 
of movement of the pipe will result in a berm being left behind and a new one being 
started.  On the other hand a berm that is pushed over by the pipe may engulf other berms, 
thereby increasing the volume of the berm. 

In general the lateral displacement history will determine the number of berms that are 
formed, and the number of history parameters that need to be stored to describe the 
current state of the system. 

The mathematical formulation of the model has been developed and documented in this 
report.  The berm model is implemented in ABAQUS in association with the existing pipe-
soil interaction element of ABASUS - PSI element.  The formation of soil berms as a result 
of pipe-soil interaction is calculated in the user supplied material subroutine – UMAT of 
the PSI element.  User Manual, Example Solutions, and the source code list of the user 
subroutine UMAT are provided in the Appendices. 

The model has been adapted for use within ABABQUS.  The user routine developed for 
this purpose is being tested against the prototype version (which works within an in-house 
code “NPEX”).  

If permission is granted by Shell Oil, it is intended to make  the model developed available 
throughout the Shell Group (i.e. SIEP and its Affiliates), and also to the pipeline design 
contractors who are selected to perform lateral buckling design, with the provision that the 
contractors may only use the model for design of pipelines in which a Shell Affiliate has a 
significant equity stake.   
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2. MODEL  DESCRIPTION 

Two types of the pipe-soil interaction mechanisms are included in the model: 

• Coulombic Friction Model, and 

• Berm Formation Model. 

2.1. Description of the Friction Model 

2.1.1. Isotropic Friction Model 

In many systems involving sliding interfaces the friction force (F) is proportional to the 
normal contact force (N).   

F  = µ N (2.1.1)  

in which µ is the coefficient of friction.  This is often termed Coulomb Friction or Dry 
Friction.  Equation (2.1.1) represents the isotropic friction, where frictional characteristics 
are the same in all directions. 

2.1.2. Anisotropic Friction Model 

For a three dimensional problem there are two orthogonal components of the friction 
force – FAxial and FLateral for pipelines, and the corresponding coefficients of friction – µAxial 
and µLateral.  In general pipeline friction is not isotropic.  Frictional characteristics of sliding 
pipelines are represented in two models - uncoupled model and coupled model. 

2.1.2.1. Uncoupled Model 

 In the uncoupled model the frictional responses in each orthogonal directions are 
unaffected by each other.  The maximum friction force of the uncoupled model is 
represented as follows: 

FAxial = µAxial N (2.1.2)  

FLateral = µLateral N (2.1.3)  

2.1.2.2. Coupled Model 

For many three dimensional systems friction in one direction affects the friction in the 
other direction.  The initiation of sliding is often described by an elliptical failure envelop 
on the friction force space: 

( FAxial / µAxial ) 2 +( FLateral / µLateral ) 2 = N2 (2.1.4) 

Direction of slip is normal to the slip surface of (2.1.4) (this is termed the associated flow).  
Therefore, slip is not always in the direction of the friction force.  In the special isotropic 
friction case, where the two friction coefficients are equal, the slip surface becomes a circle, 
and slip surface of (2.1.4) becomes equivelant to (2.1.1). 
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2.2. Mathematical Formulation of the Berms Model 

2.2.1. Description of the Berms Model 

The model provides lateral resistance as a functional of the lateral displacement history 
only.  It does not consider coupling of axial and lateral effects.  

Each berm is described by its volume V, and location x.  Here “berm volume” means the 
volume per unit length along the pipeline, which is really the cross sectional area of the 
berm. 

Berms can be on either side of the pipe: the ones that resist increases in the lateral pipe 
displacement u will be referred to as “positive berms” whereas “negative berms” are on the 
other side of the pipe.  A variable ξ is introduced, which takes the value ξ = 1 for a 
positive berm, and ξ = -1 for a negative berm.  

For simplicity, consider first berms that are concentrated at a point.  As the pipe moves it 
pushes a berm in front of it.  The resistance q provided by the berm depends on the 
volume V of the berm, which in turn changes in a specified way with increasing 
displacement, in such a way that for large displacements it converges to an equilibrium, 
steady state value Vequil, from either above, or from below, as defined by two volume-
displacement curves. 

If the pipe changes the direction of motion, it leaves a berm behind.  As a result, there may 
be any number of berms on the seafloor.  If the pipe runs into a berm, it engulfs it.  In the 
process, the volume of the current berm being pushed by the pipe is increased by the 
volume of the engulfed berm.  This gives an upwards jump in the resistance to movement, 
with the new resistance being based on the sum of the two volumes.  This new resistance 
will then again evolve acoording to one of the two (upper or lower) volume-displacement 
curves until the next berm is encountered, or the direction of movement changes. 

The “input parameters” to this basic model are 3 functions: a berm volume-resistance 
relation, and upper and lower volume-displacement relations, that describe how a berm 
volume larger or smaller than the equilibrium value would converges to the equilibrium 
value as the displacement increases. 

In applications it is more convenient to specify resistance-displacement relations, than 
volume-displacement relations, since the former can be measured directly during a test, and 
is more often displayed in publications or reports about such tests.  Clearly the volume-
displacement relation can be derived from the resistance-displacement relation, and vice-
versa, using the volume-resistance relations.  Thus the implementation of the model is 
based on specifying a volume-resistance relation, and two force-displacement relations as 
input to the model.  These relationships will be referred to as input functions.  In an 
implementation of the model they may be referred to as user-defined functions (e.g. by 
piecewise linear interpolation between values provided by the user).  These input functions 
need to be defined from two tests: one starting with a large berm and monitoring how 
berm volume and resistance to movement evolves, and another starting with no berm. 

2.2.2. Formulation of the Berms Model 

Concentrating the berm at a point, as assumed in the previous section, leads to a jump in 
the resistance-displacement relation whenever a berm is engulfed.  Such jumps are not only 
physically unrealistic, but also cause convergence difficulties in numerical computations.  In 
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this section the jumps are removed by introducing a mobilisation displacement into the 
formulation. 

The mobilisation displacement is assumed to be a function of berm volume, V, so that it 
can be written as,  

umob = umob(V) (2.2.1) 

where 

umob  = mobilisation displacement to mobilise the full resistance of the berm; 

umob(.) = input functioni; gives mobilisation displacement for the berm resistance as a function of berm 
volume. 

If a berm is being pushed over by the pipe it is referred to as the sliding berm.  The 
resistance provided by this berm is then written as, 

q = ξ q( V ) (2.2.2) 

where 

q = resistance provided by berm (force per unit length), positive when the force which the pipe 
exerts on the soil is in the increasing x and u direction. 

q(.) = input function, giving the magnitude of the berm resistance as a function of berm volume V. 
Consider the evolution of berm volume as the pipe pushes it along.  If one starts with a 
small berm, the berm will increase in volume until it reaches a steady-state condition at 
which the berm remains constant.  Tests suggest that this occurs over a few pipe diameters.  
This means that there is an equilibrium berm volume,  Vequil.  On the other hand, if the 
berm is larger than the equilibrium size, then material from the berm will tend to be left 
behind, as the pipe is riding over the berm.  In this case the volume of the berm is 
decreasing as the pipe continues to push the berm over.  This berm volume evolution is 
best described by providing two force-displacement relationships that can readily be 
determined experimentally: 

a) The first force-displacement relationship to be provided is determined by pushing over a very 
large berm (it must be at least as large as the largest berm that will encountered for the 
displacement history for which the model is to be applied). 

b) The second force-displacement relationship is determined by starting at zero berm volume, and 
applying displacements until an equilibrium value of the resistance is reached. 

These two force displacement relations can be written as 

R = R(u)  (2.2.3) 

and 

r = r(u),  (2.2.4) 

respectively, where 

R = resistance for berm volume exceeding the equilibrium value (decreasing monotonically with 
increasing displacements u and converging to a value R = qequil  as  u  ∞ ); 

                                                 
i  “User-defined function” means a function defined by input parameters to the model, e.g. by piecewise 

linear interpolation between points points defined as part of the input parameters. 
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r = resistance for berm volume smaller than the equilibrium value (increasing monotonically and 

converging to a value r = qequil as u  ∞ ); 

R(.) = user-specified function, determined from a test starting with a very large berm volume, and 
pushing it over with the pipe until an equilibrium resistance qequil is reached; 

r(.) = user-specified function, determiend from a test starting with zero berm volume, and increasing 
the displacements of the pipe until an equilibrium resistance is reached. 

u = lateral pipe displacement (During tests to determine the functions R(.) and r(.), the 
displacement u is the pipe displacement.  However in the application of the model for other 
displacement histories the argument of the functions r(.) and R(.) will in general differ from the 
pipe displacement u.  In defining r(.), r(0) should be taken to be the resistance at zero berm 
volume.  This is the minimum resitance, and may include the sand-pipe friction, if this is not 
included separately.  On the other hand for the function R(.), the choice of the point where u=0 
does not matter:  e.g. one can take the displacement to be zero at the largest expected berm 
volume.  One might then also extrapolate the function R(.) for negative displacements, to 
represent larger than expected bermsii. 

The above resistance functions implicity also define the evolution of berm volume as a 
function of displacement.  Indeed, the evolution of the volume can be written as 

V = V(R(u))   for above equilibrium berm volumes (2.2.5) 

V = V(r(u))     for below-equilibrium berm volumes (2.2.6) 

where 

V = berm volume, as before 

V(.) = inverse function to the function q(.) in q = q(V) defined in Eq. 2.2; this provides the volume of 
the berm as a function of the resistance 

Although the model accounts for berm volume reduction, as material is left behind, it does 
not account for the influence the material left behind may have on the pipe, if during a 
subsequent cycle the pipe comes back to the left-behind material.  Thus in essence the 
model can represent the resistance forces involved in going over a berm, but once the pipe 
has gone over a berm, the original berm is lost. 

So far only the resistance against movement provided a single berm being pushed along by 
the pipe has been described.  In general several berms will be present.  In this case the 
status of each berm may be classified as follows: 

a) The berm is sliding if the pipe has reached the location of the berm (u=x), and is 
pushing the berm along.  The sliding berm offers the full resistance q=q(V), as 
defined by Eq. 2.2.  There can be only one sliding berm at the time, because any 
other berm that the pipe runs into coalesces into the sliding berm. 

b) The berm is engaged if the pipe comes within one mobilisation displacement of it.  
In this case the berm starts to offer some resistance to the pipe.  Over the 
mobilisation displacement the resistance must increase in a continuous fashion 
from that provided by the sliding berm just before the engagement, that that of the 
combined berms.  Engaged berms do not change in volume V or location x, until 
the become engulfed by the sliding berm.  As a result the energy absorbed by an 

                                                 
ii  This would ensure that a solution the resistance model will not fail if larger than expected berm 

volumes develop, even though the function R(.) is not properly defined from experimental data in this 
range.) 
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engaged berm as the pipe moves towards it elastically recoverable if the pipe 
changes the direction of motion. 

c) The berm is active if it is sliding or engaged.  Otherwise it is inactive. 

Consider several berms on the same side of the pipe.  Starting with the berm closest to the 
pipe, the locations of the berms will be denoted by  x1, x2, …(with  ξ x1 < ξ x2 < ξ x3 < 
…), and the volumes denoted by V1, V2, …, respectivelyiii. 

In addition to the actual berm volumes V, it is convenient to work with hypothetical berm 
volumes.  These represent the volume of the sliding berm if the pipe movement were to 
continue to and past the berm considered.   There are two hypothetical berms volumes: V’ 
represents the sliding berm volume just before the pipe reaches the berm considered, and 
V” just after.  The guiding principle is that when two berms coalesce their volume is added.  
Thus,  

Vi” =  Vi’  +  Vi (2.2.7) 

in the above 

Vi
’  = hypothtical volume that the berm being pushed by the pipe would reach just before the pipe 

reaches the ith berm; 

Vi” = hypothetical berm volume that would develop if the pipe were pushed to just beyond the ith 
berm location; 

Vi  = current volume of ith berm (before the pipe reaches it). 
The procedure to calculate Vi+1’ from Vi” is as follows: 

1. Start with Vi”. 

2. Calculate the resisting force from qi” = q(Vi”). 

3. Calculate the displacement on the reference curves defined by Eqs. 2.3 and 2.4 from 

ui” = R-1(qi” )  if   qi” > qequil 

ui” = r-1(qi” )  if   qi” < qequil  

ui”  = ∞   if   qi” = qequil   (no ui  value needed subsequently in this case) 

in which R-1(.), and r-1(.) denote the inverse functions to R(.) and r(.), as defined in Eqs. 
2.3 and 2.4, respectively.  This represents the displacement on the reference curve 
when the pipe is the ith berm. 

4. Calculate the displacement on the reference curve when the pipe reaches the (i+1)th 
berm from 

ui+1’ = ui”  +  ξ (xi+1 – xi ) 

5. Calculate the corresponding soil resistance qi+1  from   

 
qi+1’ = R( ui+1’ ) if qi” > qequil 

qi+1’ = r( ui+1’ ) if qi” < qequil 

                                                 
iii  For simplicity in notation, the same symbols are used to describe berms on both sides of the pipe.  

Unless otherwise noted equations or inequalities given in what follows apply for either side of the 
pipe.  For instance the inequality  ξ x1 < ξ x2, really implies two inequalities, one for each side of the 
pipe. 
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qi+1’  = qequil  if qi” = qequil  

6. Calculate the berm volume just before reaching the (i+1)th berm from 

Vi+1’  =  V( qi+1’ ) 

 

The above procedure can also be defined by a single equation, as in 

Vi+1’  =  V(  R(  R-1(  q(Vi”)) + ξ (xi+1 – xi ) )) if   q(Vi”) > qequil  

Vi+1’  =  V(  r(  r-1(  q(Vi”)) + ξ (xi+1 – xi ) )) if   q(Vi”) < qequil 

Vi+1   =   Vequil  if   q(Vi”)   = qequil (2.2.8) 

Once Vi+1’ is calculated from the Eq. 2.8 or the above procedure, Vi+1”  may be calculated 
from Eq. 2.7.  Thus given V” for the first berm all other V” values can be calculated, by 
repeated applications of Eqs. 2.8 and 2.7. 

It remains to define V” for the first berm on each side of the pipe, i.e. to define V1”.  For 
the side towards which the pipe is moving,  V1” is simply the volume of the sliding berm; 
i.e.  V1”=V1. 

For the other side, one considers a ficticious change in the direction of movement.  Such 
change in direction would create a new berm at the pipe location, with zero initial volume.  
The parameters for this new berm are then given by, 

x0  =  u  (2.2.9) 

V0”  =  V0 = 0 (2.2.10) 

and can be used to initiate the calculation of the ficticious volumes of all berms on the side 
which the pipe is moving away from. 

Once all current berm parameters are defined (including the ficticious ones), the total 
resisting force is calculated from,  

q  =  qsliding  +  Σ  qengaged  (2.2.11) 

in which 

qsliding  = contribution from the sliding berm (i.e. the berm for which x=u); 

qengaged  = contribution from an engaged berm (i.e. a berms for which ξ x – umob ≤ ξ u ≤ ξ x); 

Σ  = denotes summation over all engaged berms 
For the sliding berm, the resistance is calculated from 

qsliding  =  ξ q(Vsliding ) (2.2.12) 

where Vsliding is the actual volume of the sliding berm, and for the engaged berms, it is 

qengaged  =  (qi”- qi’) (ξ  + (u – xi)/umob ) (2.2.13) 

in which 

umob = umob( Vi” ) (2.2.14) 
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2.2.3. Implementation for a Finite Increment ∆u of the Berm Model 

For implementation of the model, consider a finite displacement increment from a 
diplacement u0 to a displacement u.  The model is exact for arbitrarily large displacement 
increments, and does not require any integration.  This section describes how the berm 
parameters are updated for an arbitrary increment,  

∆u  =  u – u0   (2.2.15) 

The side towards which the pipe moves is characterised by ξ ∆u > 0.  Here berms may be 
engulfed, but for those that are not engulfed none of the berm parameters (real or 
ficticious) do not change as a result of the increment.  It is expedient to calculate these 
parameters based on conditions at the beginning of the increment.  For this purpose the 
calculation of the ficticious berm parameters is initiated by 

V1”  =  V1  where    ξ ∆u > 0 (2.2.16) 

x1  =   u0   where    ξ ∆u > 0 (2.2.17) 

in which V1 refers to the volume of the sliding berm at the beginning of the loadstep.  The 
calculation of the remaining ficticious berm parameters using Eqs. 2.8 and 2.7, is also based 
berm parameters at the beginning of the increment. 

On the other side, i.e. the one the pipe is moving away from, the ficticious volumes should 
be based on conditions at the end of the increment.  They should therefore be initiated by 

V0”  =  0  where ξ ∆u < 0  (2.2.18) 

x0  =   u  where ξ ∆u < 0  (2.2.19) 

and propagated using Eqs. 2.8 and 2.7, and the fact that none of the real berm parameters 
change during the increment. (The ficticious parameters do change, however, and it it 
therefore important to evaluate them for the end of the increment.) 

It remains only to update the parameters for the sliding berm.  For this purpose consider 
first the case when the sliding berm does not absorb other berms during the increment.  
For this case, the contribution to the resistance from the sliding berm is given by 

qsliding =  ξ R( u1” + ξ (u – x1 )) if  q1” > qequil  (2.2.20) 

qsliding =  ξ r( u1” + ξ (u – x1 )) if  q1” < qequil  (2.2.21) 

qsliding =  ξ qequil if  q1” = qequil  (2.2.22) 

in which  u1” and x1 are based on conditions at the start of the increment, by following the 
procedure for Eq. 2.8, starting with the values from Eqs. 2.18 to 2.19. 

The above applies if the sliding berm does not absorb other berms during the increment, 
i.e. if no berms are engulfed.  Only berms on the side towards which the pipe moves can 
become engulfed.   The locations xi of engulfed berms at the beginning of the increment 
satisfy,  

ξ xi  ≤ ξ u (2.2.23) 

Suppose one or more berms are engulfed in during the increment, and let j denote the 
identification number of the last one that is engulfed, i.e. the one for which ξ xi is largest, 
but still less than ξ u.   In this case the resistance at the end of the increment is given by  
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qsliding =  ξ R( uj” + ξ (u – xj ))  if  qj” > qequil  (2.2.24) 

qsliding =  ξ r( uj” + ξ (u – xj )) if  qj” < qequil  (2.2.25) 

qsliding =  ξ qequil if  qj” = qequil  (2.2.26) 

in which again uj” and xj are based on conditions at the start of the increment.  Once the 
resistance from the sliding berm is calculated its volume may be determined from 

Vsliding = V( qsliding ) (2.2.27) 

where V(.) is the input function defining the volume-resistance relation. 

Once all calculations for the increment are complete, the berms are re-numbered 
sequentially with i=1 for the sliding berm.  No renumbering or other updates are required 
for the berms the pipe has moved away from. 

2.2.4. Axial and Lateral Coupling of the Berm Model 

As described this berm formation does not account for such coupling.    If it is desired to 
introduce such coupling, an appropriate way do this is to introduce a purely frictional 
resistance component for which the axial and lateral effects are coupled, and an additional 
component due to berm formation, for which the lateral resistance can reasonably be 
assumed to be uncoupled from axial movements.  In this case one would specify zero 
lateral resistance in the berm formation model when the volume of the berm is zero.  The 
frictional resistance at zero berm volume can then be included in a coupled frictional 
model. 

2.2.5. Implementation Considerations of the Berm Model 

A difficulty in the implementation of the above-described berms model is the the number 
of berms is not known a priori.  It depends on the displacement history of the pipe.  This 
can make storage allocation for the state parameters describing the system challenging.  To 
simplify this, a maximum number of berms should be specified a priori and storage 
allocated for it.  If this maximum number is exceeded, the system should be programmed 
to “forget” the outermost berm.  As long as the berm to be forgotten is not active this will 
not give rise to any discontinuity in the response.  In the current implementation the total 
volume of the forgotten berms on each side is calculated.   When the forgotten volume is 
significant, it is advisable to repeat the analysis accounting of a larger maximum possible 
number of berms. 
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3. COMPUTER CODE 

Both the friction model and the berm formation model are implemented in the user 
subroutine UMAT of the PSI element of ABAQUS.  The pipe-soil interaction must be 
modeled using the PSI elements and interaction characteristics (of frictional and berm 
formation) must be defined in the user subroutine UMAT.  For more details refer to the 
User’s Guide in Appendix 1.  Input files of example prlblems are listed in Appendix 2.  
Fortran source code of the user subroutine UMAT is listed in Appendix 3. 
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4. EXAMPLE SOLUTIONS 

4.1. Definition of Model 

The berms formulation of the previous section has been implemented as an element in the 
NPEX program.  This program was developed as the University of Michigan, in a modular 
structure, so that new types of elements to be added.  This section presents the input and 
results from a lateral buckling calculation with NPEX, using the berms model developed. 

A heavily concrete-coated, 14-inch pipe is considered, with properties and loading 
conditions defined in Table 4.1.  The structural strength of the coating is neglected.  Only 
its weight and buoyancy are considered in the determination of the submerged weight of 
the pipe.  The steel is assumed to be elastoplastic according to the Von Mises yield 
criterion with isotropic strain hardening according to the stress-strain curve shown in Fig. 
4.1. 

Buckles at a uniform spacing of 800m are considered, and symmetry about the apex of the 
buckle, as well as the midpoint between adjacent buckles is exploited so only the pipe from 
the apex of the buckle (x=0) to the midpoint between buckles (x=400m) needs to be 
modelled. 

The pipe elements used are based on the moderate-deflection beam theory, in which the 
axial strains at any point on the cross section of the pipe care calculated from 

ε =  u’ + ½ w’2  -  w”  y (4.1) 

in which u and w denote the displacement components in the axial and lateral directions; y 
denotes the distance of the point considered from the centroidal axis normal to the plane 
of bending (i.e. from the neutral axis under pure bending); and a prime, as in (.)’ denotes 
differentiation with respect to the axial coordinate, x. 

The NPEX pipe elements do account for the effect of internal pressure, but they are based 
on small strain theory.  I.e. the difference between true stresses (defined as force per unit 
area after deformation) and nominal stress (defined as force per unit area before 
deformation) is neglected.  (Indeed if these differences become important, it is 
questionable whether beam theory could still provide a good approximation, except 
perhaps for special cases.  Thus the small strain approximation is judged to be consistent 
with the beam theory approximation.) 

The discretisation used is as follows:  the first 90m from the apex of the buckle (from x=0 
to x=90m) are modelled with 200 elements of a constant length,  Le=90m/200=0.45m.  
This represents the region where significant lateral displacements could develop.  Beyond 
this point, only axial displacements are expected, feeding into the buckle.  This axial feed 
region (from x=90m to x=400m) is modelled with 100 of the same elements, but their 
length increases in constant steps from Le=0.45m at x=90m, to Le=5.7m at x=400m. 

The soil resistance is modelled by adding a frictional component of the resistance, to the 
resistance due to the berms. 

For the berms component the model described in this report is used.  The input functions 
are defined as follows: 

• The mobilisation displacement function, umob=umob(V), from Eq. 2.1, is defined by 
taking the mobilisation displacement to be a constant  umob=1cm. 
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• The berm resistance-volume relation, q=q(V), from Eq. 2.2,  is defined by 
assuming that the resistance q is proportional to the berm volume V.  Under this 
assumption it does not matter what the constant of proportionality is, so q=V is 
used. 

• The upper resistance-displacement relation, R=R(u),  in Eq. 2.3, is defined by 
piecewise linear interpolation from the values shown in Table 4.2.  If the 
displacement falls outside the range of u values, linear extrapolation is used.  A plot 
of this relation can be found in Fig. 4.2. 

• The lower resistance-displacement relation, r=r(u), in Eq. 2.4, is defined by 
piecewise linear interpolation from the values shown in Table 4.3.  If the 
displacement falls outside the range of u values, linear extrapolation is used.  A plot 
of this relation can be found in Fig. 4.2. 

In addition, to represent pipe embeddment, an initial berm volume corresponding to a 
resistance of 

qinit / W =  1.12 (4.2) 

was used, where qinit = q(Vinit) represents the resistance based on the initial berm volume, 
Vinit ,  and W denotes the submerged weight of the pipe, which is W=3.389kN/m. 

For the frictional component, a simple uncouplediv elastic-perfectly plastic model is used 
for the axial and lateral friction force, with friction coefficients given in Table 4.1, and 
mobilisation displacements of 2cm and 3cm for the axial and lateral directions, respectively. 

The loading sequence, and buckling initiation is as follows: 

1. The pipe is assumed to be initially straight at stress free.  All boundary conditions and soil resistance 
elements are active, but not loads have been applied yet. 

2. To simulate laying of the pipe, the external pressure is applied together with an equivalent 
temperature change, to ensure that the effective axial force in the pipe corresponds to the on-bottom 
effective lay tension, Nlay.  This equivalent temperature increment is calculated based on the 
assumption of elastic behaviour of the pipe, and using thin-walled shell theory based on the diameter 
to the midsurfacev, to obtain 
 
∆Tlay = -[Nlay + (1-2ν) ¼ π (D-t)2 pext ] /(EA α ) 
 
in which ∆Tlay represents a decrease in temperature to compensate for the change in length of the 
pipe that occurs before touchdown due to the lay tension and the external pressure; A=π (D-t) t is the 
cross sectional area of the pipe; pext=γfw Gsw hsw is the external presssure; and the remaining symbols 
are defined in Table 3.1.  
 
(An alternative to this approach, is to apply the external pressure and lay tension before activating the 

                                                 
iv  The NPEX program also includes a coupled model based on an elliptical slip condition (i.e. slip 

boundary on a plot of axial vs. lateral friction force is an ellipse).  Therein slip is modelled in the same 
way as the plastic flow of metals, using a flow rule with a direction of slip that is normal to the slip 
surface. However for this example, probabily because of the high axial friction coefficient, it was 
found that the coupled model could result in the largest buckling lateral displacement occurred away 
from the apex of the intended buckle (x=0),  where there was more axial slip.  For this reason the 
coupled model is not used for this example. 

v  This is not the most accurate approximation, but it is the same approximation made in the FE 
formulation, by integration of the virtual work at the midsurface of the pipe wall, and therefore it is the 
approximation that will result in the correct effective axial force in the FE analysis. 
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soil resistances and boundary conditions for axial displacements, but the current NPEX program does 
not allow changes in boundary conditions and the existence of elements over time.) 

3. An imperfection to initiate the lateral buckle is introduced by pushing the pipe laterally at the apex in 
a displacement controlled fashion, using a bumper element.  This bumper element connects the node 
at the apex of the buckle to a bumper node with a specified lateral displacement, which during this 
step increases from 0 to 0.12m, and subsequently remains at 0.12m.  Whenever the lateral 
displacemen of the pipe exceeds that of the bumper node, the bumper element is not active.  
However, any penetration of the bumper node into the pipe is resisted by a stiff linear spring 
(stiffness of 6.16MN/m).  

4. The internal pressure is applied. 

5. Apply the temperature change.vi 

4.2. Results 

The calculations have been performed for 5 cycles of heating  to 77°C above ambient, 
followed by cooling back to the ambient temperature.  The results are shown in Figs. 4.3 to 
4.17.  Therein integer cycle numbers 1,2,3,… represent the end of the heating cycle 
(temperature rise of 77°C above ambient), whereas cycle numbers 1.5, 2.5, 3.5, … 
represent the end of the cooling cycle (ambient temperature). 

The following observations can be made from the plots of the results obtained by using 
NPEX code: 

1. Plasticity occurs only at the first heating cycle; subsequent cycles are elastic (Fig. 4.17). 

2. The maximum axial strains are 0.73% in compression (Fig. 4.13), and 0.52% in tension (Fig. 4.14).  
These occur at the end of the first heating cycle, at the apex of the buckle at diametrically opposite 
sides.  In reality these strains could be affected by point-to-point variations in wall thickness and/or 
yield strength, and by the stiffening effect of the concrete coating, neither of which is included in this 
analysis. 

3. The lateral displacement at the apex of the buckle in the hot condition increases slightly from cycle 
to cycle (Figs. 4.3, 4.6 and 4.10), but this is largely prevented by the build-up of berms, which 
provide increasing resistance at the apex of the buckle (Fig. 4.9). 

4. At the end of the 2nd heating cycle, the bending moment at the apex of the buckle is 6% lower than at 
the first cycle.  This reduction increases to 14% at the 5th cycle.  (Figs. 4.4, 4.7 and 4.11.) 

5. The effective axial force at the buckle increases slightly from cycle to cycles, as the pipe becomes 
increasingly constrained between berms.  (Figs. 4.8 and 4.12.) 

6. The very high axial soil frictional resistance used results in high axial forces at the midpoint between 
buckles (x=400m), close to the fully constrained axial force.   (Fig. 4.8) 

 

The lateral displacement results obtained by using the ABAQUS are significantly smaller 
than those of NPEX results.  The results obtained by using ABAQUS are listed in Figs. 
4.18 to 4.20 for comparison with the corresponding results obtained by using NPEX in 

                                                 
vi  To track the solution path a special algorithm is needed, because the temperature reaches a maximum 

then drops and increases again.  For this purpose an algorithm is used in which the increment in lateral 
displacement at the apex of the buckle is controlled at each increment.  Initially, while the pipe is in 
contact with the bumper, very small lateral displacement increments are used.  However once the pipe 
looses contact with the bumper, the algorithm is switched to a Riks-type approach in which the 
increment in archlength of the solution path in load-displacement space with a suitably defined norm is 
controlled at every timestep. 
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Figs. 4.3 to 4.5.  The maximum values at the extreme temperature values of each cycle are 
listed in Table 4.5 for comparison purposes. 

 
Description Symbol Value Units 
Outer Pipe Diameter D 0.3556 m 
Wall Thickness t 0.0173 m 
Coating Thickness tc 0.105 m 
Young's Modulus E 185207 MPa 
Poisson's Ratio ν 0.3 - 
Coefficient of Thermal Expansion α 1.24E-05 1/°C 
Unit Weight of Fresh Water γfw 9.81 kN/m3 
Specific Weight of Contents Gp 0.1 - 
Specific Weight of Steel Gs 7.868 - 
Specific Weight of Coating Gc 2.963 - 
Specific Weight of Seawater Gsw 1.025 - 
Water Depth hsw 140 m 
Axial Friction Coefficient µA 2.484 - 
Lateral Friction Coefficient µL 0.4? - 
Internal Pressure pint 14.4 MPa 
Temperature Rise ∆T 77 °C 
Spacing of Lateral Buckles H 800 m 
Effective on Bottom Lay Tension Nlay 578 kN 

Table 4.1:  Pipe properties and Loading conditions. 

 
Displacement, u (m) 0 0.07 0.14 0.5 1.12 1.5 
Normalised Resistance, 
R(u)/W 

1.6 1.52 1.2 0.72 0.4 0.4 

Table 4.2: Data defining the input functin for the upper resistance-displacement relation, R=R(u), by 
piecewise linear interpolation, or extrapolation, where needed. 

 
Displacement, u (m) 0 0.5 1 1.5 3 
Normalised Resistance, r(u)/W 0 0.2 0.32 0.4 0.4 

Table 4.3: Data defining the input functin for the upper resistance-displacement relation, R=R(u), by 
piecewise linear interpolation, or extrapolation, where needed. 
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Plastic Strain Stress 
MPa 

0 270 
0.0001 294.165 
0.0002 306.9023 
0.0005 324.5903 
0.001 338.6449 

0.0015 347.1468 
0.002 353.3081 
0.003 362.1781 
0.004 368.6062 
0.005 373.6707 
0.006 377.8603 
0.008 384.5667 
0.01 389.8505 

0.012 394.2215 
0.015 399.6379 
0.02 406.7308 
0.03 416.942 
0.04 424.3421 
0.05 430.1724 
0.06 434.9955 
0.07 439.1155 
0.08 442.716 
0.09 445.9163 
0.1 448.7987 

0.15 460.066 
0.2 468.2315 

0.25 474.6648 
0.3 479.9867 

0.35 484.5329 
0.4 488.5057 

0.45 492.037 
0.5 495.2176 
1 516.6603 
5 570.098 

Table 4.4: Data defining the stress-strain relationship for the steel pipe.  Piecewise linear interpolation 
between the data provided is used.  (This is the stress strain curve used in a small strain 
formulation.  This should be used as a true-stress strain curve if a large strain formulation is 
being used to solve the same problem, since it is found in [1] based on a large strain 
formulation that the small strain approximation for pipe bending is best when the true stress-
strain relation is used as inut.) 
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Temperature 
Cycle 

Temperature 
Change 
(deg C) 

Maximum 
Lateral 

Displacement 
(m) 

Maximum 
Bending 
Moment 
(MN-m) 

Maximum 
Effective 
Tension 

(MN) 
1st Heat-up 77 1.34 / n.pex 0.575 1.18 
Cool-down 0 0.68 / n.pex 0.072 -0.35 
2nd Heat-up 77 1.36 0.542 1.18 
Cool-down 0 0.71 0.072 -0.38 
3rd Heat-up 77 1.37 0.520 1.21 
Cool-down 0 0.73 0.072 -0.39 
4th Heat-up 77 1.36 0.507 1.24 
Cool-down 0 0.74 0.072 -0.40 
5th Heat-up 77 1.36 0.502 1.25 
Cool-down 0 0.75 0.073 -0.41 

Table 4.5: Comparisons of the maximum values obtained by using ABAQUS / NPEX. 
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Fig. 4.1:  Stress-strain curve used for the steel. (See Table 4.4 for numerical data.) 
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Fig. 4.2:  Resistance-Displacement Relations describing covergence of the berm to the equilibrium 

size.  A larger berm diminishes by leaving material behind, whereas a smaller berm grows 
until it reaches the equilibrium size. 
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Fig. 4.3: History of temperature and lateral displacement at the apex of the buckle. 
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Fig. 4.4: History of bending moment and lateral displacement at the apex of the buckle. 
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Fig. 4.5: History of effective axial force and lateral displacement at the apex of the buckle. 
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Fig. 4.6:  Lateral Displacements at the end of each heating and cooling cycle.  Integer cycle numbers 

1,2,3,… represent the end of the heating cycle (temperature rise of 77°C above ambient), 
whereas cycle numbers 1.5, 2.5, 3.5, … represent the end of the cooling cycle (ambient 
temperature). 
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Fig. 4.7: Bending Moment at the end of each heating and cooling cycle. 
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Fig. 4.8: Effective axial Force at the end of each heating and cooling cycle.  Positive axial force 

represents tension. 
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Fig. 4.9: Lateral soil resistance force normalised with respect to submerged weight of pipe at the end of 

each heating and cooling cycle. 
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Fig. 4.10: Lateral displacement at the apex of the buckle at the end of each heating and cooling cycle. 
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Fig. 4.11: Bending moment at the apex of the buckle at the end of each heating and cooling cycle. 
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Fig. 4.12: Effective Axial force at the apex of the buckle at the end of each heating and cooling cycle. 

Positive axial force represents tension. 
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Fig. 4.13: Axial strain on the compression (concave) side at the apex of the buckle at the end of each 

heating and cooling cycle. 



SR.16.12645 - 26 - Unrestricted 
 

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0 1 2 3 4 5 6
Cycle Number

Ax
ia

l S
tra

in
 o

n 
Te

ns
io

n 
Si

de

 
Fig. 4.14: Axial strain on the tension (convex) side at the apex of the buckle at the end of each heating 

and cooling cycle. 
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Fig. 4.15: Axial stress on the tension (convex) side at the apex of the buckle at the end of each heating 

and cooling cycle.  Positive stress indicates tension. 
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Fig. 4.16: Axial stress on the compression (concave) side at the apex of the buckle at the end of each 

heating and cooling cycle.  Positive stress indicates tension. 
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Fig. 4.17 Equivalent uniaxial platic strain at the apex of the buckle at the end of each heating and 

cooling cycle. 
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Fig. 4.18 History of temperature and lateral displacement at the apex of the buckle – results from 

analysis using ABAQUS. 
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Fig. 4.19 History of bending moment and lateral displacement at the apex of the buckle – results from 

analysis using ABAQUS. 
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Fig. 4.20 History of effective axial force and lateral displacement at the apex of the buckle – results 

from analysis using ABAQUS. 
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5. CONCLUSIONS 

A berm formation model is developed and implemented in ABAQUS.  The model includes 
options of the coupled and uncoupled frictional interfaces.   

The developed computer model is verified by solving example problems and by comparing 
the results with the results obtained by in-house code NPEX. 
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APPENDIX 1. USER’S GUIDE: BERM FORMATION MODEL 

A1.1. General 

In order to model the soil’s resistance to the axial and the lateral displacements of pipelines 
on the seabed the pipe-soil interaction (PSI) element of ABAQUS of type “PSI24” is used 
[2].  The PSI24 element is a ABAQUS provided, 2-dimensional, 4-node element, and its 
purpose is to model the axial and the lateral pipe-soil interactions on even seabed.  The two 
nodes on one side of this nominally rectangular-shaped element are attached on the pipe 
and move with the pipe, while the other two nodes on the other side are fixed in space, 
thus the deformation of the PSI element represents the axial and the lateral displacements 
of pipe on seabed.  The responses of the PSI element to the pipe displacement, or the 
material properties of the PSI element represent the response characteristics of the axial 
and the lateral pipe-soil interface, and these are defined via a user subroutine UMAT.  This 
report provides the user subroutine UMAT for ABAQUS.  Formulation and the theoretical 
background of the material model used in UMAT is presented in Appendix 2.  Source coe 
of the use subroutine UMAT is provided in Appendix 3.  The associated input parameters 
must be provided in the files <jobname>.inp and <jobname>.brm.  <jobname> 
represents the name of the ABAQUS job.  Following must be done by the user in order to 
use the frictional and soil berm formation models in ABAQUS: 

• Develop the ABAQUS model including the pipe elements, material properties, 
boundary conditions, and loading conditions.   

• Generate PSI24 elements to model the pipe-soil interactions.  Two nodes on one 
side of the element must be attached on the pipe, and the other two nodes must be 
fixed in space  Reference the ABAQUS user’s manual in Ref. [2] for information 
on the PSI element.  Example is presented in Appendix 2. 

• In the <jobname>.inp file define the 7 input parameters.  Definition of the 7 input 
parameters and an example are presented in Appendix 2. 

• Tabulated berm formation model data must be provided in the file 
<jobname>.brm, if the berm formation model is used to represent the pipe-soil 
interaction.  Example is presented in Appendix 2.  

• The user subroutine UMAT must be linked to ABAQUS.  Source list of UMAT is 
presented in Appendix 3. 

A1.2. Generation of PSI Elements in ABAQUS 

Refer to the ABAQUS user’s guide in Ref. [2] for the usage of the PSI24 element.  The PSI 
elements must be generated and attached to the pipe sections which interact with seabed.  
For example, the following ABAQUS input lines are used to generate 300 PSI elements, 
and to assign the name SOIL for the PSI elements.  The nodes 1 through 301 are 
commonly shared by both pipe and PSI elements, thus the pipe and PSI elements are 
attached to each other through these nodes.  The nodes 1001 through 1301 are on the 
other side of the PSI elements and must be fixed in space later in the section where 
boundary conditions are defined (not shown below). 

… 

*element, type=psi24, elset=soil 
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1001, 1, 2, 1002, 1001 

*elgen, elset=soil 

1001, 300, 1, 1 

… 

A1.3. Definition of the 7 Input Parameters in <jobname>.inp file 

Input parameters are defined in the <jobname>.inp file in the following format: 

… 

*pipe-soil interaction, elset=soil 

*pipe-soil stiffness, type=user, prop=7, variables=100 

<YY1>, <YY2>, <UM1>, <UM2>, <NB>, <QINIT>, <WEIGHT> 

… 

where the seven parameters are defined as: 

• YY1 = Friction force limit per unit pipe length in the pipe axial direction.   

• YY2 = Absolute value of YY2 is the friction force limit per unit pipe length in 
the pipe lateral direction.  The axial and the lateral frictions defined by YY1 aand 
YY2 are coupled with the elliptical slip surface and the normal flow rule if YY2 is 
positive.  They are uncoupled (with the rectangular slip surface) if YY2 is negative. 

• UM1 = Mobilization displacement in the pipe axial direction 

• UM2 = Mobilization displacement in the pipe lateral direction 

• NB  = Maximum number of soil berms on each side of pipe.  If larger 
number of berms are formed during simulation the berms that are located farthest 
from the initial pipe location will be removed automatically.  If NB = 0, the berm 
formation model is de-activated and only the frictional interaction is calculated.  
Both frictional and the berm formation model is calculated when NB is positive. 

• QINIT = Initial berm resistance force per unit pipe length in both lateral 
directions of the pipe.  This represents the initial berm size surrounding the pipe at 
its initial location.  Embedment of pipe at its initial location causes this additional 
soil resistance.  If this initial resistance is larger than the equilibrium value 
QEQUIL, the force-displacement relation for the first cycle will reach a maximum 
at a displacement UM(QINIT), i.e. the mobilization displacement UM 
corresponding to a berm resistance of QINIT. 

• WEIGHT = Submerged pipe weight per unit length 

Following is an example input lines in <jobname>.inp file: 

… 

*pipe-soil interaction, elset=soil 

*pipe-soil stiffness, type=user, prop=7, variables=100 

2.484, -0.4, 0.02, 0.03, 10, 1.12, 3389. 

… 
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A1.4. Coupled Friction Model 

If NB is positive the axial and the lateral frictions are coupled based on the elliptical slip 
condition, and the normal flow rule (similar to the yield surface of the metal plasticity).  
Therefore, 

• If (Y1/YY1)2 + (Y2/YY2) 2  < 1, then the frictional slip does not occur and the 
pipe sticks on the seabed. 

• If (Y1/YY1)2 + (Y2/YY2) 2  = 1, then the pipe slips on the seabed in the direction 
normal to the elliptical slip surface.   

in which 

Y1 = shear force between pipe and seabed in the pipe axial direction 

Y2 = shear force between pipe and seabed in the pipe lateral direction 

A1.5. Uncoupled Friction Model 

If NB = 0 the axial and the lateral frictions are independent (un-coupled): 

• If Y1 < YY1 and Y2 < YY2, then the frictional slip does not occur and the pipe 
sticks on the seabed. 

• If Y1 = YY1 or Y2 = YY2, then the the pipe slips on the seabed in either axial or 
lateral direction. 

The corresponding slip surface is thus rectangular.  Normal directions are not defined at 
the four corners of the rectangle, but this does not cause any numerical problem since the 
shear forces are calculated for the prescribed displacements in the finite element calculation 
processes.  

A1.6. Berm Formation Model 

If NB is positive, then the berm formation model is activated, and berm resistances are 
calculated.  The tabulated data for the berm model must be input by the user in the file 
<jobname>.brm.  The lateral resistance of the soil berm model acts independently from 
the axial friction force (i.e. uncoupled).  The tabulated data for the berm model must be 
input in the following format: 

<nqv> 
<BV,BQ_1> 
<BV,BQ_2> 
.. 
<BV,BQ_nqv> 
<nqum> 
<UM,BQ_1> 
<UM,BQ_1> 
.. 
<UM,BQ_nqum> 
<ncru> 
<U,CR_1> 
<U,CR_2> 
.. 
<U,CR_ncru> 
<nsru> 
<U,SR_1> 
<U,SR_2> 
.. 
<U,SR_nsru> 

where parameters are defined as follows: 
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• Nqv = Number of data sets <BV, BQ> 

• BV, BQ = Berm volume, and berm resistance force per unit pipe length data set.  
Nqv sets of these data are used to define piecewise linear relationships.  BV values 
must be monotonically increasing. 

• Nqum = Number of data sets <UM, BQ> 

• UM, BQ = Berm mobilization, and berm resistance force per unit pipe length data 
set.  Nqum sets of these data are used to define piecewise linear relationships.  UM 
values must be monotonically increasing. 

• Ncru = Number of data sets <U, CR> 

• U, CR = Berm displacement, and berm resistance force per unit pipe length 
data set (upper response).  Ncru sets of these data are used to define piecewise 
linear relationships.  U values must be monotonically increasing.  Only the 
differences between the U values input are important.  Results are invariant to 
constant shift in U values.  The last two values of the berm resistance must be 
identical and they are defined as the equilibrium resistance QEQUIL.  

• Nsru = Number of data sets <U, SR> 

• U, SR = Berm displacement, and berm resistance force per unit pipe length 
data set (lower response).  Nsru sets of these data are used to define piecewise 
linear relationships.  U values must be monotonically increasing.  Only the 
differences between the U values input are important.  Results are invariant to 
constant shift in U values.  The last two values of the berm resistance must be 
identical, and they must be equal to the equilibrium resistance QEQUIL. 

Following is an example <jobname>.brm file: 
2          nqv 
 0.0  0.0   BV,BQ 
 1.0  1.0   BV,BQ 
2          nqum 
 0.01 0.0   UM,BQ 
 0.01 1.0   UM,BQ 
6          ncru 
 0.0  1.6   U,CR 
 0.07 1.52  U,CR 
 0.14 1.2   U,CR 
 0.5  0.72  U,CR 
 1.12 0.4   U,CR 
 1.5  0.4   U,CR 
5          nsru 
 0.0  0.0   U,SR 
 0.5  0.2   U,SR 
 1.0  0.32  U,SR 
 1.5  0.4   U,SR 
 3.0  0.4   U,SR 
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APPENDIX 2. INPUT EXAMPLES: BERM FORMATION MODEL 

A2.1. Example.inp (ABAQUS model input file) 
*heading 
Shell SIEP, 2D Berms Soil Interaction Model 
… 
… 
 

A2.2. Example.brm (Berm Model Parameters) 
 
2          nqv 
 0.0  0.0  BV,BQ 
 1.0  1.0 
2          nqum 
 0.01 0.0  UM,BQ 
 0.01 1.0 
6          ncru 
 0.0  1.6  U,CR 
 0.07 1.52 
 0.14 1.2 
 0.5  0.72 
 1.12 0.4 
 1.5  0.4 
5          nsru 
 0.0  0.0  U,SR 
 0.5  0.2   
 1.0  0.32 
 1.5  0.4 
 3.0  0.4 
 
 



SR.16.12645 - 37 - Unrestricted 
 

APPENDIX 3. SOURCE CODE: BERM FORMATION MODEL  
 

ABAQUS uses the user supplied subroutine UMAT in order to simulate the friction and 
the berm models of the pipe-soil interaction.  ABAQUS execution procedures are 
described in volume 1 of ABAQUS manual [2].  The pipe-soil interface is modeled using 
the PSI elements (Pipe-Soil Interface element).  The friction and the berm interface models 
are simulated through the non-linear material behaviours of the PSI elements.  The 
subroutine UMAT is used to input the input parameters which define the interface 
properties, and to simulate the friction and the berm models.    
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      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN, 
     2 TIM,DTIM,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS, 
     3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT, 
     4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC) 
c 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 MATERL 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2 STRAN(NTENS),DSTRAN(NTENS),TIM(2),PREDEF(1),DPRED(1), 
     3 PROPS(NPROPS),COORDS(3),DROT(3,3), 
     4 DFGRD0(3,3),DFGRD1(3,3) 
C 
      DIMENSION ESTIFF(3),EELAS(3) 
c 
      character*256 filename1,filename2,jobname,outdir 
c 
      common/kdata17/aelprop17(1000),aelpar17(1000),elk17(2,2),elp17(2), 
     &               elp_l17(2) 
      common/kdata17I/ielprop17(1000),ielpar17(1000), 
     &                nielprop17,naelprop17,nielpar17,naelpar17, 
     &                ihave17 
      common/kdata27/aelprop27(1000),aelpar27(1000),elk27(2,2),elp27(2), 
     &               elp_l27(2), 
     &               rup(2,100),rlow(2,100)  
      common/kdata27I/ielprop27(1000),ielpar27(1000), 
     &                nielprop27,naelprop27,nielpar27,naelpar27, 
     &                ihave27 
      common/kdata/u(2,3),ub_l(2,3),u0(2,3), x(2,3) 
      common/kdataI/ien(3), lm(3), id(2,3),jread, info 
C 
C ----------------------------------------------------------- 
C     UMAT FOR SHELL SIEP Berms model 
C ----------------------------------------------------------- 
C 
      if(ndi.ne.2.or.nshr.ne.0) then 
        write(0,*) '*** UMAT: incorrect dimensions' 
        call xit 
      end if 
c 
c Define element storage requirements for element 17 end 27:  
c 
      nen=1                 !number of element nodes used 
      nninc=1               !number of nodes 
      ndof=2                !number of degrees of freedom per node needed 
      idof=2 
      nsd1=1                !number of coordinates per node used by element 
      nen=3 
      ndof4bc=2 
      nnodes=3 
      nsd=2 
      neldof=2 
c 
      iel=noel 
      ielflag=0 
c 
c force scale factor 
c 
      WL=props(7) 
c     write(0,*) 'all forces scaled with:', WL 
c 
c define properties (once) for element 17 
c 
      if(ihave17.eq.0) then 
        ihave17=1 
c 
c get properties for element 17 
c 
        ielprop17(1)=nninc 
        aelprop17(1)=WL*props(1) 
        aelprop17(2)=WL*props(2) 
        aelprop17(3)=WL*props(1)/props(3)      !axial stiffness  SKK1 
        aelprop17(4)=WL*abs(props(2)/props(4)) !transverse stiffness SKK2 
        write(0,*)'stiffness=',aelprop17(3),aelprop17(4) 
c 
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c Define element storage requirements for element 17:  
c 
        naelpar17=2           !number of real element parameters needed 
c       nielpar17=0           !number of integer element parameters needed 
        nielpar17=1           !number of integer element parameters needed 
        naelprop17=4          !number of element properties needed (defined above) 
        nielprop17=1          !number of integer element properties needed (defined 
above) 
      end if 
c 
c n27 (= nb); n27=0 -> element 17 only 
c 
      n27=int(props(5)) 
c 
c define properties (once) for element 27 
c read functions (once) for element 27 
c 
      if(ihave27.eq.0.and.n27.gt.0) then 
        ihave27=1 
        call getoutdir(outdir, lenoutdir) 
        call getjobname(jobname, lenjobname) 
        filename1=outdir(1:lenoutdir) // '/'  
     &            // jobname(1:lenjobname) // '.brm' 
        write(0,*) ' ' 
        write(0,*) 'resistance data read from :' 
        write(0,*) filename1 
c 
        open(91,file=filename1,status='old') 
c 
c read V-Q 
c 
        j=1 
        read(91,*,end=1000,err=1000) nqv 
        do i=1,nqv 
          read(91,*,end=1000,err=1000) xx,yy 
          aelprop27(j+i)=xx 
          aelprop27(j+nqv+i)=yy*WL 
        end do 
        j=j+2*nqv 
c 
c read UM-BQ 
c 
        read(91,*,end=1000,err=1000) nqum 
        do i=1,nqum 
          read(91,*,end=1000,err=1000) xx,yy 
          aelprop27(j+i)=xx 
          aelprop27(j+nqum+i)=yy*WL 
        end do 
        j=j+2*nqum 
c 
c read U-CRn 
c 
        read(91,*,end=1000,err=1000) ncru 
        do i=1,ncru 
          read(91,*,end=1000,err=1000) xx,yy 
          aelprop27(j+i)=xx 
          aelprop27(j+ncru+i)=yy*WL 
        end do 
        j=j+2*ncru 
c 
c read U-SRn 
c 
        read(91,*,end=1000,err=1000) nsru 
        do i=1,nsru 
          read(91,*,end=1000,err=1000) xx,yy 
          aelprop27(j+i)=xx 
          aelprop27(j+nsru+i)=yy*WL 
        end do 
        j=j+2*nsru 
        jread=j 
c 
        go to 2000 
1000    continue 
        write(0,*) '*** UMAT: I/O error reading functions' 
        call xit 
2000    continue 
c 
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c get properties for element 27 
c 
        nb=int(props(5)) 
        qinit=props(6)*WL 
c 
        ielprop27(1)=nninc 
        ielprop27(2)=idof 
        ielprop27(3)=nb 
        ielprop27(4)=nqv 
        ielprop27(5)=nqum 
        ielprop27(6)=ncru 
        ielprop27(7)=nsru 
c 
        aelprop27(1)=qinit 
c 
c Define element storage requirements for element 27:  
c 
        naelpar27=4*nb+2      !number of real element parameters needed 
        nielpar27=2           !number of integer element parameters needed 
        naelprop27=jread      !number of element properties needed 
        nielprop27=7          !number of integer element properties needed 
      end if 
c 
c get statevarables 
c 
      is=0 
      do i=1,naelpar17 
        aelpar17(i)=statev(i) 
      end do 
      is=is+naelpar17 
      do i=1,nielpar17 
        ielpar17(i)=int(statev(is+i)) 
      end do 
      is=is+nielpar17 
      if(n27.gt.0) then 
        do i=1,naelpar27 
          aelpar27(i)=statev(is+i) 
        end do 
        is=is+naelpar27 
        do i=1,nielpar27 
          ielpar27(i)=int(statev(is+i)) 
        end do 
        is=is+nielpar27 
      end if 
      xinit=statev(is+1) 
      is=is+1 
      if(info.eq.0) then 
        info=1 
        write(0,*) '*** UMAT: nr. of statevariables used:',is 
      end if 
c 
c force initialization the first time 
c 
      if(xinit.eq.0.0) then 
        ielflag=6 
        xinit=1.0 
      end if 
c 
c define dummy nodes and system matrices to be able to use the original NPEX routines 
c it forced to calculate CLL=1.0 and will also work in arbitray directions 
c 
      ien(1)=2 
      x(1,1)=coords(1)-1.0d0 
      x(2,1)=coords(2) 
      x(1,2)=coords(1) 
      x(2,2)=coords(2) 
      x(1,3)=coords(1)+1.0d0 
      x(2,3)=coords(2) 
      id(1,1)=1 
      id(2,1)=2 
      id(1,2)=1 
      id(2,2)=2 
      id(1,3)=1 
      id(2,3)=2 
c 
c routine input 
c 
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      time0=tim(2) 
      time=tim(2)+dtim 
      u0(1,2)=stran(1) 
      u0(2,2)=stran(2) 
      u(1,2)=stran(1)+dstran(1) 
      u(2,2)=stran(2)+dstran(2) 
      ub_l(1,2)=(u(1,2)-u0(1,2))/dtim 
      ub_l(2,2)=(u(2,2)-u0(2,2))/dtim 
c 
c call element 17 routine 
c 
      call GENELKP_17(AELPAR17,AELPROP17, 
     &   ELK17,ELP17,ELP_L17, 
     &   ID,IELPAR17,IELPROP17, 
     &   IEN,LM, 
     &   U,UB_L,U0,X,  
     &   IEL,IELFLAG,IGRP,ISTEP,NAELPAR17,NAELPROP17,NDOF,NDOF4BC, 
     &   NELDOF,NELDOFI, 
     &   NEN,NIELPAR17,NIELPROP17,NNODES,NSD,TIME,TIME0) 
c 
c call element 27 routine 
c 
      if(n27.gt.0) 
     &call GENELKP_27(AELPAR27,AELPROP27, 
     &   ELK27,ELP27,ELP_L27, 
     &   ID,IELPAR27,IELPROP27, 
     &   IEN,LM, 
     &   U,UB_L,U0,X,  
     &   IEL,IELFLAG,IGRP,ISTEP,NAELPAR27,NAELPROP27,NDOF,NDOF4BC, 
     &   NELDOF,NELDOFI, 
     &   NEN,NIELPAR27,NIELPROP27,NNODES,NSD,TIME,TIME0) 
c 
c return stiffness matrix 
c 
      DDSDDE(1,2)=0.0 
      DDSDDE(2,1)=0.0 
      DDSDDE(1,1)=elk17(1,1) 
      DDSDDE(2,2)=elk17(2,2)+elk27(1,1) 
c 
c  return forces 
c 
      STRESS(1)=-elp17(1) 
      STRESS(2)=-elp17(2)-elp27(1) 
c 
c store statevarables 
c 
      is=0 
      do i=1,naelpar17 
        statev(i)=aelpar17(i) 
      end do 
      is=is+naelpar17 
      do i=1,nielpar17 
        statev(is+i)=float(ielpar17(i)) 
      end do 
      is=is+nielpar17 
      if(n27.gt.0) then 
        do i=1,naelpar27 
          statev(is+i)=aelpar27(i) 
        end do 
        is=is+naelpar27 
        do i=1,nielpar27 
          statev(is+i)=float(ielpar27(i)) 
        end do 
        is=is+nielpar27 
      end if 
      statev(is+1)=xinit 
      is=is+1 
C 
      RETURN 
      END 
c------------------------------------------------------------------------ 
      logical function LF_INDIC(i,j) 
c Ruben's modified version for ABAQUS: 
c 
c allow all: 
      lf_indic=.true. 
c don't print 
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      if(j.eq.3) lf_indic=.false. 
c don't initialize each time 
      if(j.eq.6) lf_indic=.false. 
c special: i=j=6 initilize once 
      if(i.eq.j) lf_indic=.true. 
      return 
      end 
c------------------------------------------------------------------------ 
c Routine belows are unmodified SIEP NPEX routines 
c------------------------------------------------------------------------ 
C 
      SUBROUTINE GENELKP_27(AELPAR,AELPROP, 
     &   ELK,ELP,ELP_L, 
     &   ID,IELPAR,IELPROP, 
     &   IEN,LM, 
     &   U,UB_L,U0,X,  
     &   IEL,IELFLAG,IGRP,ISTEP,NAELPAR,NAELPROP,NDOF,NDOF4BC, 
     &   NELDOF,NELDOFI, 
     &   NEN,NIELPAR,NIELPROP,NNODES,NSD,TIME,TIME0) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION AELPAR(NAELPAR),AELPROP(NAELPROP), 
     & ELK(NELDOF,NELDOF),ELP(NELDOF),ELP_L(NELDOF), 
     & ID(NDOF4BC,NNODES),IELPAR(NIELPAR),IELPROP(NIELPROP), 
     & IEN(NEN),LM(NELDOF), 
     & U(NDOF,NNODES),UB_L(NDOF,NNODES),U0(NDOF,NNODES),X(NSD,NNODES) 
C 
C Local declarations: 
      ALLOCATABLE 
     & BV(:,:),BX(:,:),BVL(:),  !berm resistances & locations 
     & VQV(:),QQV(:),           !Q-V relation 
     & UQUM(:),QQUM(:),         !Q-UM relation 
     & UCRU(:),RCRU(:),         !CR-U relation 
     & USRU(:),RSRU(:)          !SR-U relation 
      LOGICAL LF_INDIC,P_TOWARDS_B 
      DIMENSION NEB(2) 
C 
C Recover element properties from IELPROP & AELPROP, & store locally: 
      MI=1 
      NNINC=IELPROP(MI) 
      MI=MI+1 
      IDOF=IELPROP(MI) 
      MI=MI+1 
      NB=IELPROP(MI) 
      MI=MI+1 
      NQV=IELPROP(MI) 
      MI=MI+1 
      NQUM=IELPROP(MI) 
      MI=MI+1 
      NCRU=IELPROP(MI) 
      MI=MI+1 
      NSRU=IELPROP(MI) 
      MI=MI+1 
      ALLOCATE( !user-specified function data 
     & VQV(NQV),QQV(NQV),         !Q-V relation 
     & UQUM(NQUM),QQUM(NQUM),     !Q-UM relation 
     & UCRU(NCRU),RCRU(NCRU),     !CR-U relation 
     & USRU(NSRU),RSRU(NSRU))     !SR-U relation 
      MA=1 
      QINIT=AELPROP(MA) 
      MA=MA+1 
      CALL DUPA2B(AELPROP(MA),VQV,NQV) 
      MA=MA+NQV 
      CALL DUPA2B(AELPROP(MA),QQV,NQV) 
      MA=MA+NQV 
      CALL DUPA2B(AELPROP(MA),UQUM,NQUM) 
      MA=MA+NQUM 
      CALL DUPA2B(AELPROP(MA),QQUM,NQUM) 
      MA=MA+NQUM 
      CALL DUPA2B(AELPROP(MA),UCRU,NCRU) 
      MA=MA+NCRU 
      CALL DUPA2B(AELPROP(MA),RCRU,NCRU) 
      MA=MA+NCRU 
      CALL DUPA2B(AELPROP(MA),USRU,NSRU) 
      MA=MA+NSRU 
      CALL DUPA2B(AELPROP(MA),RSRU,NSRU) 
      MA=MA+NSRU 
      !Derived element properties: 
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      QEQUIL=RCRU(NCRU) 
      UEQUIL=MAX(UCRU(NCRU),USRU(NSRU))  !as good as infinity 
C 
C Recover element parameters & store them locally: 
      NB2=NB+NB 
      NB4=NB2+NB2 
      ALLOCATE(BV(NB,2),BX(NB,2),BVL(2)) 
      CALL DUPA2B(AELPAR(1),BV,NB2) 
      CALL DUPA2B(AELPAR(NB2+1),BX,NB2) 
      CALL DUPA2B(AELPAR(NB4+1),BVL,2) 
      CALL DUIA2B(IELPAR(1),NEB,2) 
C 
C Form LM, UELB_L, and NELDOFI: 
      INODE=IEN(1) 
      IEQ=ID(IDOF,INODE) 
      LM(1)=IEQ 
      UELB_L=UB_L(IDOF,INODE) 
      NELDOFI=1 
C 
C Displacements & Coordinates: 
      UU=U(IDOF,INODE) 
      UU0=U0(IDOF,INODE) 
      INODE2=INODE-NNINC 
      INODE3=INODE+NNINC 
      CLL=0.5D0*ABS( X(1,INODE3)-X(1,INODE2))  !tributary length 
      XX=X(1,INODE) 
C 
C Initialise element parameters, if appropriate: 
      IF(LF_INDIC(IELFLAG,6)) THEN 
        VINIT=AINTERP(QINIT,QQV,VQV,NQV,0) 
        BV=0.D0 !all elements of array 
        BX=0.D0 !all elements of array 
        DO J=1,2 
          BV(1,J)=VINIT 
          BX(1,J)=UU0 
          NEB(J)=1 
        ENDDO 
        CALL DUPB2A(AELPAR(1),BV,NB2)  
        CALL DUPB2A(AELPAR(NB2+1),BX,NB2) 
        CALL DUPB2A(AELPAR(NB4+1),BVL,2) 
        CALL DUIB2A(IELPAR(1),NEB,2) 
        IF(IELFLAG.EQ.2**6) RETURN 
      ENDIF 
C 
C Step 1) Identify direction of motion. If this has changed, 
C    create new berms with zero volume, & shift existing ones: 
      IF(UU.GT.UU0) THEN 
        JDIR=2 
        GXI=1.D0 
      ELSE 
        JDIR=1 
        GXI=-1.D0 
      ENDIF 
      IF(GXI*(BX(1,JDIR)-UU0).GT.0.D0) THEN 
C       reversal of slip direction; create new berm 
        NEB0=NEB(JDIR) 
        IF(NEB0.EQ.NB) THEN 
          BVL(JDIR)=BVL(JDIR)+BV(NB,JDIR) 
        ELSE 
          NEB(JDIR)=NEB0+1 
        ENDIF 
        DO I=NEB(JDIR),2,-1 
          BV(I,JDIR)=BV(I-1,JDIR) 
          BX(I,JDIR)=BX(I-1,JDIR) 
        ENDDO 
        BV(1,JDIR)=0.D0 
        BX(1,JDIR)=UU0 
      ENDIF 
C 
C Steps 2-5) Resistance, stiffness & update: 
      SS=0.D0    !soil resistance per unit length of pipe 
      DSDU=0.D0  !corresponding stiffness 
      GXI=1.D0 
      DO J=1,2   !sides 
        GXI=-GXI 
        QPP0=0.D0 
        UPP0=0.D0 
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        P_TOWARDS_B=GXI*(UU-UU0).GT.0.D0 !true if pipe moves towards berm 
        IF(P_TOWARDS_B) THEN 
          XB0=UU0 !Berms on side of displ increment 
        ELSE 
          XB0=UU  !Berms on opposite side to displ increment 
          XB0_U=1.D0 
          UPP0_U=0.D0 
        ENDIF 
        IG=0 
        DO I=1,NEB(J) !berms on Jth side 
          XB1=BX(I,J) 
c*ruben: 
c*ruben: This is the only NPEX element code change: 
c*ruben: due to the large displacement formulation the program can violate 
c*ruben: the check below slightly. The check has been switched off. 
c*ruben: 
c*ruben:  CALL CHKRMIN(gxi*(xb1-xb0),0.d0,"nelmt27a",8) !temp check logic code (tclc) 
          UP=UPP0+GXI*(XB1-XB0) 
          IF(QPP0.GT.QEQUIL) THEN 
            QP=AINTERP(UP,UCRU,RCRU,NCRU,0) 
          ELSE IF(QPP0.LT.QEQUIL) THEN 
            QP=AINTERP(UP,USRU,RSRU,NSRU,0) 
          ELSE 
            QP=QEQUIL 
          ENDIF 
          VP=AINTERP(QP,QQV,VQV,NQV,0) 
          VPP=VP+BV(I,J) 
          QPP=AINTERP(VPP,VQV,QQV,NQV,0) 
          IF(QPP.GT.QEQUIL) THEN 
            UPP=AINTERP(QPP,RCRU,UCRU,NCRU,0) 
          ELSE IF(QPP.LT.QEQUIL) THEN 
            UPP=AINTERP(QPP,RSRU,USRU,NSRU,0) 
          ELSE 
            UPP=UEQUIL 
          ENDIF 
          IF(GXI*(UU-XB1).GT.0.D0) THEN 
            !Berm is engulfed 
            IG=I 
            QPPG=QPP 
            UPPG=UPP 
            XBG=XB1 
          ELSE 
            !Berm engaged or inactive 
            UM=AINTERP(QPP,QQUM,UQUM,NQUM,0)  !mob displ 
            XM=XB1-GXI*UM                     !activation location 
            IF(.NOT.P_TOWARDS_B) THEN 
              !Address complications in calculation of consistent tangent 
              !for engaged berms the pipe is moving away from. 
              !What follows is essentially a differentiation of the code 
              !above to calculate the resistance force. 
              UP_U=UPP0_U-GXI*XB0_U 
              IF(QPP0.GT.QEQUIL) THEN 
                QP_U=AINTERP(UP,UCRU,RCRU,NCRU,1)*UP_U 
              ELSE IF(QPP0.LT.QEQUIL) THEN 
                QP_U=AINTERP(UP,USRU,RSRU,NSRU,1)*UP_U 
              ELSE 
                QP_U=0.D0 
              ENDIF 
              VP_U=AINTERP(QP,QQV,VQV,NQV,1)*QP_U 
              VPP_U=VP_U 
              QPP_U=AINTERP(VPP,VQV,QQV,NQV,1)*VPP_U 
              IF(QPP.GT.QEQUIL) THEN 
                UPP_U=AINTERP(QPP,RCRU,UCRU,NCRU,1)*QPP_U 
              ELSE IF(QPP.LT.QEQUIL) THEN 
                UPP_U=AINTERP(QPP,RSRU,USRU,NSRU,1)*QPP_U 
              ELSE 
                UPP_U=0.D0 
              ENDIF 
              UPP0_U=UPP_U 
              XB0_U=0.D0 
            ENDIF 
            IF(GXI*(UU-XM).GT.0.D0) THEN 
              !Berm is engaged (i.e. active, but not engulfed) 
              SKB=(QPP-QP)/UM 
              SS=SS+SKB*(UU-XM) 
              IF(P_TOWARDS_B) THEN 
                DSDU=DSDU+SKB 
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              ELSE 
                UM_U=AINTERP(QPP,QQUM,UQUM,NQUM,1)*QPP_U 
                XM_U=-GXI*UM_U 
                SKB_U=((QPP_U-QP_U)-(QPP-QP)*UM_U/UM)/UM 
                DSDU=DSDU+SKB*(1.D0-XM_U)+SKB_U*(UU-XM) 
              ENDIF 
            ENDIF 
          ENDIF 
          QPP0=QPP 
          UPP0=UPP 
          XB0=XB1 
        ENDDO 
        !Update last engulfed berm: 
        IF(IG.GT.0) THEN 
          UPP=UPPG+GXI*(UU-XBG) 
          IF(QPPG.GT.QEQUIL) THEN 
            QPP=AINTERP(UPP,UCRU,RCRU,NCRU,0) 
            QU1=AINTERP(UPP,UCRU,RCRU,NCRU,1) 
          ELSE IF(QPPG.LT.QEQUIL) THEN 
            QPP=AINTERP(UPP,USRU,RSRU,NSRU,0) 
            QU1=AINTERP(UPP,USRU,RSRU,NSRU,1) 
          ELSE 
            QPP=QEQUIL 
            QU1=0.D0 
          ENDIF 
          DSDU=DSDU+QU1  !stiffness contribution from sliding berm 
          SS=SS+GXI*QPP  !resistance contribution from sliding berm 
          VPP=AINTERP(QPP,QQV,VQV,NQV,0) 
          !Let last engulfed berm become current sliding berm: 
          BV(IG,J)=VPP    
          BX(IG,J)=UU 
          IF(IG.GT.1) THEN !Re-number berms 
            NEB(J)=NEB(J)-IG+1 
            DO I=1,NEB(J) 
              II=IG+I-1 
              BV(I,J)=BV(II,J) 
              BX(I,J)=BX(II,J) 
            ENDDO 
          ENDIF 
          !Not necessary to zero no-longer-existing berms. 
        ENDIF 
      ENDDO 
      ELP(1)=-SS*CLL 
C 
C Compute ELK & ELP_L if apropriate (uses consistent tangent): 
      IF(LF_INDIC(IELFLAG,1)) THEN 
        ELK(1,1)=DSDU*CLL 
        ELP_L(1)=-ELK(1,1)*UELB_L 
      ENDIF  !LF_INDIC(IELFLAG,1)) 
C 
C Update element parameters if apropriate: 
      IF(LF_INDIC(IELFLAG,2)) THEN 
        CALL DUPB2A(AELPAR(1),BV,NB2)  
        CALL DUPB2A(AELPAR(NB2+1),BX,NB2) 
        CALL DUPB2A(AELPAR(NB4+1),BVL,2) 
        CALL DUIB2A(IELPAR(1),NEB,2) 
      ENDIF  !LF_INDIC(IELFLAG,2) 
C 
C Print stresses in element: 
      IF(LF_INDIC(IELFLAG,3)) THEN 
        WRITE(6,"(' IEL=',I6,' X=',G13.4,' U=',G13.4,' S=',G13.4)") 
     &              IEL,XX,UU,SS 
      ENDIF   !LF_INDIC(IELFLAG,3) 
      RETURN 
      END 
C 
C--------------------------------------------------------------- 
C 
      SUBROUTINE GENELKP_17(AELPAR,AELPROP, 
     &   ELK,ELP,ELP_L, 
     &   ID,IELPAR,IELPROP, 
     &   IEN,LM, 
     &   U,UB_L,U0,X,  
     &   IEL,IELFLAG,IGRP,ISTEP,NAELPAR,NAELPROP,NDOF,NDOF4BC, 
     &   NELDOF,NELDOFI, 
     &   NEN,NIELPAR,NIELPROP,NNODES,NSD,TIME,TIME0) 
      IMPLICIT REAL*8 (A-H,O-Z) 
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      DIMENSION AELPAR(NAELPAR),AELPROP(NAELPROP), 
     & ELK(NELDOF,NELDOF),ELP(NELDOF),ELP_L(NELDOF), 
     & ID(NDOF4BC,NNODES),IELPAR(NIELPAR),IELPROP(NIELPROP), 
     & IEN(NEN),LM(NELDOF), 
     & U(NDOF,NNODES),UB_L(NDOF,NNODES),U0(NDOF,NNODES),X(NSD,NNODES) 
C 
C Local declarations: 
      LOGICAL LF_INDIC,PLASTIC_LOADING,UNCOUPLED !26.3.2000 
      DIMENSION UELB_L(2) 
C 
C Initialise element parameters, if appropriate: 
      IF(LF_INDIC(IELFLAG,6)) THEN 
        IF(NAELPAR.GT.0) CALL CLEAR(AELPAR,NAELPAR) 
        IF(NIELPAR.GT.0) CALL ICLEAR(IELPAR,NIELPAR) 
        IF(IELFLAG.EQ.2**6) RETURN 
      ENDIF 
C 
C Form LM, UELB_L, and NELDOFI: 
      INODE=IEN(1) 
      DO J=1,2     !element dofs 
        IEQ=ID(J,INODE) 
        LM(J)=IEQ 
        UELB_L(J)=UB_L(J,INODE) 
      ENDDO 
      NELDOFI=2 
C 
C Recover element properties: 
      YY1=AELPROP(1) 
      YY2=AELPROP(2) 
      CKK1=AELPROP(3) 
      CKK2=AELPROP(4) 
      NNINC=IELPROP(1)  !node number increment for element length 
      YSQ1=YY1*YY1 
      YSQ2=YY2*YY2 
      UNCOUPLED=YY2.LT.0.  !26.3.2000 
      YY2=ABS(YY2)  !26.3.2000 
C 
C Recover Element Parameters: 
      UPL1=AELPAR(1) 
      UPL2=AELPAR(2) 
C 
C Displacements & Coordinates: 
      UU1=U(1,INODE)      !displ in x-direction or u-displ 
      UU2=U(2,INODE)      !displ in y-direction or v-displ 
      INODE2=INODE-NNINC 
      INODE3=INODE+NNINC 
      CLL=0.5D0*ABS( X(1,INODE3)-X(1,INODE2))  !tributary length 
C 
C Uncoupled case: 
      IF(UNCOUPLED) THEN !26.3.2000 block that follows 
C 
C   Calculate ELK, ELP & ELP_L: (uncoupled case) 
        ELK(1,2)=0. 
        ELK(2,1)=0. 
        PLASTIC_LOADING=.FALSE. 
C     Axial direction (1): 
        SEL1=CKK1*(UU1-UPL1) 
        IF(ABS(SEL1).GT.YY1) THEN 
          PLASTIC_LOADING=.TRUE. 
          SS1=SIGN(YY1,SEL1) 
          ELP(1)=-CLL*SS1 
          ELK(1,1)=0. 
          ELP_L(1)=0. 
          UPL1=UU1-SS1/CKK1 
        ELSE 
          SS1=SEL1 
          ELP(1)=-CLL*SS1 
          ELK(1,1)=CLL*CKK1 
          ELP_L(1)=-ELK(1,1)*UELB_L(1) 
        ENDIF 
C     Transverse direction (2): 
        SEL2=CKK2*(UU2-UPL2) 
        IF(ABS(SEL2).GT.YY2) THEN 
          PLASTIC_LOADING=.TRUE. 
          SS2=SIGN(YY2,SEL2) 
          ELP(2)=-CLL*SS2 
          ELK(2,2)=0. 
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          ELP_L(2)=0. 
          UPL2=UU2-SS2/CKK2 
        ELSE 
          SS2=SEL2 
          ELP(2)=-CLL*SS2 
          ELK(2,2)=CLL*CKK2 
          ELP_L(2)=-ELK(2,2)*UELB_L(2) 
        ENDIF 
C 
C   Update element parameters if apropriate: 
        IF(LF_INDIC(IELFLAG,2)) THEN 
          AELPAR(1)=UPL1 
          AELPAR(2)=UPL2 
        ENDIF  !LF_INDIC(IELFLAG,2) 
C 
C   Print stresses in element: 
        IF(LF_INDIC(IELFLAG,3)) THEN 
          XX1=X(1,INODE)      !initial x-coordinate 
          WRITE(6,"(' IEL=',I6,' X=',G13.4,' SS1=',G13.4, 
     &' SS2=',G13.4,' PL=',L1)") 
     &     IEL,XX1,SS1,SS2,PLASTIC_LOADING 
        ENDIF   !LF_INDIC(IELFLAG,3) 
        RETURN 
      ENDIF !End uncoupled case.  26.3.2000 
C 
C Compute ELP: 
      SEL1=CKK1*(UU1-UPL1) 
      SEL2=CKK2*(UU2-UPL2) 
      RR1=SEL1/YSQ1 
      RR2=SEL2/YSQ2 
      TAU=SQRT(SEL1*RR1+SEL2*RR2) 
      PLASTIC_LOADING=TAU.GT.1. 
      IF(PLASTIC_LOADING) THEN 
        DLAMBDA=0.D0 
        TAUP=-CKK1*RR1*RR1-CKK2*RR2*RR2 
        DO ITER=1,1000 
          DLAMBDA=DLAMBDA-(TAU-1.)/TAUP 
          QQ1=1.+CKK1*DLAMBDA/YSQ1 
          QQ2=1.+CKK2*DLAMBDA/YSQ2 
          SS1=SEL1/QQ1 
          SS2=SEL2/QQ2 
          RR1=SS1/YSQ1 
          RR2=SS2/YSQ2 
          TAU=SQRT(SS1*RR1+SS2*RR2) 
          TAUP=-RR1*RR1*CKK1/QQ1-RR2*RR2*CKK2/QQ2 
          IF(ABS(TAU-1.).LT.1.D-13) GO TO 701 
        ENDDO 
        WRITE(6,*) " No Convergence in nelmt17 state calculations." 
        STOP 
  701   CONTINUE !Iterations converged 
      ELSE 
        SS1=SEL1 
        SS2=SEL2 
      ENDIF 
      ELP(1)=-CLL*SS1 
      ELP(2)=-CLL*SS2 
C 
C Compute ELK & ELP_L if apropriate (uses consistent tangent): 
      IF(LF_INDIC(IELFLAG,1)) THEN 
        IF(PLASTIC_LOADING) THEN 
          TST1=CKK1/QQ1 
          TST2=CKK2/QQ2 
          RT1=RR1*TST1 
          RT2=RR2*TST2 
          ELK(1,1)=CLL*(TST1+RT1*RT1/TAUP) 
          ELK(1,2)=CLL*RT1*RT2/TAUP 
          ELK(2,1)=ELK(1,2) 
          ELK(2,2)=CLL*(TST2+RT2*RT2/TAUP) 
        ELSE 
          ELK(1,1)=CLL*CKK1 
          ELK(1,2)=0. 
          ELK(2,1)=0. 
          ELK(2,2)=CLL*CKK2 
        ENDIF 
        DO I=1,NELDOFI 
          TST1=0. 
          DO J=1,NELDOFI 
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            TST1=TST1- ELK(I,J)*UELB_L(J) 
          ENDDO 
          ELP_L(I)=TST1 
        ENDDO 
      ENDIF  !LF_INDIC(IELFLAG,1)) 
C 
C Update element parameters if apropriate: 
      IF(LF_INDIC(IELFLAG,2)) THEN 
        IF(PLASTIC_LOADING) THEN 
          UPL1=UPL1+RR1*DLAMBDA 
          UPL2=UPL2+RR2*DLAMBDA 
          AELPAR(1)=UPL1 
          AELPAR(2)=UPL2 
        ENDIF 
      ENDIF  !LF_INDIC(IELFLAG,2) 
C 
C Print stresses in element: 
      IF(LF_INDIC(IELFLAG,3)) THEN 
        XX1=X(1,INODE)      !initial x-coordinate 
        WRITE(6,"(' IEL=',I6,' X=',G13.4,' SS1=',G13.4, 
     &' SS2=',G13.4,' PL=',L1)") 
     &   IEL,XX1,SS1,SS2,PLASTIC_LOADING 
      ENDIF   !LF_INDIC(IELFLAG,3) 
      RETURN 
      END 
C 
C Log of Changes 
C 29 Jan 2000 Implementation started, with a copy of nelmt16. 
C 26 March 2000 added possibility of no coupling. 
C 
c------------------------------------------------------------------------ 
      SUBROUTINE DUPA2B(A,B,N) 
      !DUPlicate real array 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION A(N),B(N) 
      DO 1 I=1,N 
  1   B(I)=A(I) 
      RETURN 
      END 
C 
      SUBROUTINE DUPB2A(A,B,N) 
      !DUPlicate real array 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION A(N),B(N) 
      DO 1 I=1,N 
  1   A(I)=B(I) 
      RETURN 
      END 
C  
      SUBROUTINE DUIA2B(IA,IB,N) 
      !DUplicate Integer array 
      DIMENSION IA(N),IB(N) 
      DO 1 I=1,N 
  1   IB(I)=IA(I) 
      RETURN 
      END 
C  
      SUBROUTINE DUIB2A(IA,IB,N) 
      !DUplicate Integer array 
      DIMENSION IA(N),IB(N) 
      DO 1 I=1,N 
  1   IA(I)=IB(I) 
      RETURN 
      END 
C 
      SUBROUTINE CHKRMIN(A,AMIN,STRING,NCHARS) 
      IMPLICIT REAL*8 (A-H,O-Z) 
C Check that A does not exceed AMIN.  Stop if it does. 
      CHARACTER*1 STRING(NCHARS) 
      IF(A.LT.AMIN) THEN 
        WRITE(6,*) ' Error detected by CHKREAL:' 
        WRITE(6,*) ' A=',A,' value of integer' 
        WRITE(6,*) ' AMIN=',AMIN,' MINimum value' 
        WRITE(6,*) STRING 
        STOP 
      ENDIF 
      RETURN 
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      END 
C 
      subroutine clear(a,m) 
      implicit double precision (a-h,o-z) 
      dimension a(M) 
      do 100 i=1,m 
      a(i) = 0. 
  100 continue 
      return 
      end 
c 
      subroutine iclear(ia,m) 
      dimension ia(M) 
      do i=1,m 
        ia(i) = 0 
      enddo 
      return 
      end 
c------------------------------------------------------------------------ 
      SUBROUTINE CHKINT(NN,NNMAX,STRING,NCHARS) 
C Check integer, NN 
      CHARACTER*1 STRING(NCHARS) 
      IF(NN.GT.NNMAX) THEN 
        WRITE(6,*) ' Error detected in CHKINT (Check integer):' 
        WRITE(6,*) ' NN=',NN,' value of integer' 
        WRITE(6,*) ' NNMAX=',' maximum value' 
        WRITE(6,*) STRING 
        STOP 
      ENDIF 
      RETURN 
      END 
C 
c------------------------------------------------------------------------ 
      DOUBLE PRECISION FUNCTION AINTERP(X,XX,YY,NPTS,NDIFF) 
C Function for linear interpolation from a look-up table. 
C Uses extrapolation if argument TT is outside range [XX(1),XX(NPTS)] 
C XX values must be monotonic (increasing or decreasing) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION XX(NPTS),YY(NPTS) 
      N1=1 
      N2=NPTS 
      TT=X 
      X1=XX(N1) 
      X2=XX(N2) 
      GXI=SIGN(1.D0,X2-X1) 
      TT=GXI*TT 
      X1=GXI*X1 
      X2=GXI*X2 
      IF(TT.GE.X2) THEN 
        N1=NPTS-1 
        X1=GXI*XX(N1) 
      ELSE IF(TT.LE.X1) THEN 
        N2=2 
        X2=GXI*XX(2) 
      ELSE 
        DO WHILE(N2-N1.GT.1) 
          NM=(N2+N1)/2 
          XM=GXI*XX(NM) 
          IF(TT.GT.XM) THEN 
            N1=NM 
            X1=XM 
          ELSE 
            N2=NM 
            X2=XM 
          ENDIF 
        ENDDO 
      ENDIF 
      IF(NDIFF.EQ.0) THEN 
        AINTERP=YY(N1)+(YY(N2)-YY(N1))*(TT-X1)/(X2-X1) 
      ELSE IF(NDIFF.EQ.1) THEN 
        AINTERP=GXI*(YY(N2)-YY(N1))/(X2-X1) 
      ELSE 
        AINTERP=0.D0 
      ENDIF 
      RETURN 
      END 
C 
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C History of Development 
C This history entry added to file dated 1997. 
C 3 July 2004: generalised so that program can handle nonotonically 
C   decreasing as well as monotonically increasing values in the XX 
C   array. 
c------------------------------------------------------------------------ 
c------------------------------------------------------------------------ 
c------------------------------------------------------------------------ 
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