
Unrestricted

SR.16.12645

September 2016

Pipe-Soil Interaction
Model for Lateral
Buckling of Pipelines
Including Berm
Formation

Unrestricted SR.16.12645

Pipe-Soil Interaction Model for Lateral Buckling of Pipelines
Including Berm Formation

By

Ralf Peek, EP Projects (SIEP-EPT-PNR)

Heedo Yun, EP Projects (SIEP-EPT-PDF)

Contributions from:

Ruben van Schalkwijk (RvS Engineering, The Netherlands)

Sponsor: John Pelletier

Reviewed by: Ed Phifer

Approved by: George Rodenbusch, Jan Oude Hengel

Date of issue: 5/31/2006

Account code: Altas No. U/000945/04-0010

ECCN number: EAR 99

This document is unrestricted.

 Copyright 2003 SIEP B.V.

 SHELL INTERNATIONAL EXPLORATION AND PRODUCTION Inc, Houston

 Further copies can be obtained from the Global EP Library, BTC

SR.16.12645 - 1 - Unrestricted

SUMMARY

Global finite element modeling of pipe lateral buckling due to thermal expansion is usually
performed with beam-type elements to represent the pipe, and a Coulomb frictional model
to represent the interaction between the pipe and the seabed. According to such frictional
models the highest strains due to lateral buckling occur when the pipe is first heated.
Subsequent cycles increase the amplitude of the buckle, but also the wavelength of the
buckle, so that the maximum curvature, the maximum strains, and the stress ranges
decrease for subsequent cycles. However in reality soil berms tend to form when the pipe
buckles laterally. Upon cooling, these soil berms remain in place following the profile of
the buckled pipeline when it was first heated. As a result, upon subsequent cycles the pipe
will tend to adopt a shape similar to that at the first cycle. This has a significant impact on
the stress ranges for low cycle fatigue analysis. For this reason a model is developed that
explicitly accounts for berm formation, and can track the formation and location of any
number of berms (up to a user-specified maximum number). Both formation as well as
coalescence of berms is modeled. The model is 2-dimensional in that all pipe deformations
take place in the horizontal plane.

By including an initial berm, the berms model can also be used to model an initial higher
break-out resistance due to embeddment of the pipe.

The berms model includes considerable flexibility in describing the evolution of berm
volume with pipe displacement, and the relationship between berm resistance and berm
volume. These relationships are described by linear interpolation between any number of
user-specified points. Coalescence of berms is accounted for by adding the volumes of the
coalescing berms.

The berms model is complemented by an anisotropic frictional model for the frictional
component of the resistance. This allows different friction coefficients to be specfied in
the lateral and axial directions. It also allows coupled or uncoupled behaviour to be
modeled for the axial and lateral directions. For the coupled model an elliptical slip surface
is constructed which is treated very much like a yield surface in plasticity theories, which
the direction of slip being normal to the slip surface as for associated plastic flow in
plasticity theories.

Both the berms model and the anisotropic frictional model have been adapted so that they
can be used as a user-subroutine in the ABAQUS commercial general purpose finite
element analysis program. An example shows good agreement between the results
calculated with ABAQUS and those from the program (NPEX) for which the models were
first developed. Instructions for use of these models within ABAQUS are included.

SR.16.12645 - 2 - Unrestricted

TABLE OF CONTENTS

SUMMARY 1
TABLE OF CONTENTS 2
1. INTRODUCTION 3
2. MODEL DESCRIPTION 5

2.1. Description of the Friction Model 5
2.1.1. Isotropic Friction Model 5
2.1.2. Anisotropic Friction Model 5

2.2. Mathematical Formulation of the Berms Model 6
2.2.1. Description of the Berms Model 6
2.2.2. Formulation of the Berms Model 6
2.2.3. Implementation for a Finite Increment ∆u of the Berm Model 11
2.2.4. Axial and Lateral Coupling of the Berm Model 12
2.2.5. Implementation Considerations of the Berm Model 12

3. COMPUTER CODE 13
4. EXAMPLE SOLUTIONS 14

4.1. Definition of Model 14
4.2. Results 16

5. CONCLUSIONS 30
6. REFERENCES 31
APPENDIX 1. USER’S GUIDE: BERM FORMATION MODEL 32

A1.1. General 32
A1.2. Generation of PSI Elements in ABAQUS 32
A1.3. Definition of the 7 Input Parameters in <jobname>.inp file 33
A1.4. Coupled Friction Model 34
A1.5. Uncoupled Friction Model 34
A1.6. Berm Formation Model 34

APPENDIX 2. INPUT EXAMPLES: BERM FORMATION MODEL 36
A2.1. Example.inp (ABAQUS model input file) 36
A2.2. Example.brm (Berm Model Parameters) 36

APPENDIX 3. SOURCE CODE: BERM FORMATION MODEL 37

SR.16.12645 - 3 - Unrestricted

1. INTRODUCTION

Lateral buckling of pipelines can be a cost-effective way to accommodate thermal
expansion and limit the expansion at the ends of pipelines (affecting spools or jumpers),
especially in subsea pipelines, where burial for protection and/or insulation is not required.
However one must ensure that the bending moments and curvatures due to such lateral
buckling are not excessive, so that local buckling/wrinkling of the pipe wall, and/or
fracture at a girth weld is avoided. This has already lead to failures of at least 2 (non-Shell)
pipelines. Therefore a realistic modelling capability for lateral buckling is essential in order
to correctly quantify the risk that lateral buckles become over-stressed. Yet it has been
found by the authors that the pipe-soil interaction element in ABAQUS does not properly
or fully describe the pipe-soil interaction mechanism. In order to overcome this difficulty,
a user subroutine is developed in this study to account for different resistances in the axial
and lateral directions, as well as the interaction between these two directions.

Another important aspect of the soil resistances to lateral buckling is the formation of soil
berms. Lateral movement of a pipeline lying on a seabed (as a result of lateral buckling or
subsequent motion) causes the formation and growth of a soil berm on one side of a
pipeline. Such berms not only increase the resistance to lateral movements, but also affect
the cyclic response in a way that tends to increase the stress range due to shut-down and
restart cycles. Therefore it was decided during the course of the work to add the modelling
of berms to the scope. The model developed also allows an initial berm to be used to
represent embeddment and initial break-out of the pipe.

When a pipline buckles laterally on a sandy or clayey seafloor, it tends to push some soil
laterally, which forms a berm against the pipeline, thereby increasing the resistance to
lateral movement. Upon cooling the line will tend to pull back from the berm, but at the
next heating cycle there is an increase in resistance when the pipe encounters the berm.
Thus on the 2nd and subsequent heating cycles, the berm tends to make the pipe into the
same shape to which it has buckles at the 1st cycle. This behaviour differs from that for a
purely frictional seafloor, with no berm formation, where the maximum lateral
displacement at the buckle tends to grow with additional cycles, but the peak bending
moment decreases.

Although berm formation could also be accounted for by using higher effective friction
factors, a proper model for berm formation has the following advantages:

1. For fatigue analyses the berms model gives a much more realistic representation of
the stress histories. Using a purely frictional model with an equivalent friction
factor gives non-conservative results because:

a. The decrease in peak bending moment for subsequent cycles that is
predicted by the purely frictional model does not materialise because berms
tend to make the pipe deform at each cycle into the same shape as for the
first cycle.

b. The equivalent fricitonal model will tend to over-estimate the soil resistance
to pull back of the pipe upon cooling.

2. A number of cycles at a lower temperature, followed by a higher temperature, can
cause increased peak bending moments, as the pipe wants to break through the
berm built up in the previous cycles. This can be important for design, and can
only be predicted by modeling the berm formation.

SR.16.12645 - 4 - Unrestricted

3. By modeling initial embeddment as initial berms, the additional break out resistance
due to embeddment can be modeled. This can have a significant effect on the
buckling mode (favouring a single lobe mode rather than a 3-lobe mode, as in
Kerr’s mode 3), and resulting in higher peak bending moments. Not modeling the
berm can be non-conservative.

The proposed model explicitly accounts for the presence of berms. Depending on the
displacement history, any number of berms can form. In general a change in the direction
of movement of the pipe will result in a berm being left behind and a new one being
started. On the other hand a berm that is pushed over by the pipe may engulf other berms,
thereby increasing the volume of the berm.

In general the lateral displacement history will determine the number of berms that are
formed, and the number of history parameters that need to be stored to describe the
current state of the system.

The mathematical formulation of the model has been developed and documented in this
report. The berm model is implemented in ABAQUS in association with the existing pipe-
soil interaction element of ABASUS - PSI element. The formation of soil berms as a result
of pipe-soil interaction is calculated in the user supplied material subroutine – UMAT of
the PSI element. User Manual, Example Solutions, and the source code list of the user
subroutine UMAT are provided in the Appendices.

The model has been adapted for use within ABABQUS. The user routine developed for
this purpose is being tested against the prototype version (which works within an in-house
code “NPEX”).

If permission is granted by Shell Oil, it is intended to make the model developed available
throughout the Shell Group (i.e. SIEP and its Affiliates), and also to the pipeline design
contractors who are selected to perform lateral buckling design, with the provision that the
contractors may only use the model for design of pipelines in which a Shell Affiliate has a
significant equity stake.

SR.16.12645 - 5 - Unrestricted

2. MODEL DESCRIPTION

Two types of the pipe-soil interaction mechanisms are included in the model:

• Coulombic Friction Model, and

• Berm Formation Model.

2.1. Description of the Friction Model

2.1.1. Isotropic Friction Model

In many systems involving sliding interfaces the friction force (F) is proportional to the
normal contact force (N).

F = µ N (2.1.1)

in which µ is the coefficient of friction. This is often termed Coulomb Friction or Dry
Friction. Equation (2.1.1) represents the isotropic friction, where frictional characteristics
are the same in all directions.

2.1.2. Anisotropic Friction Model

For a three dimensional problem there are two orthogonal components of the friction
force – FAxial and FLateral for pipelines, and the corresponding coefficients of friction – µAxial
and µLateral. In general pipeline friction is not isotropic. Frictional characteristics of sliding
pipelines are represented in two models - uncoupled model and coupled model.

2.1.2.1. Uncoupled Model

 In the uncoupled model the frictional responses in each orthogonal directions are
unaffected by each other. The maximum friction force of the uncoupled model is
represented as follows:

FAxial = µAxial N (2.1.2)

FLateral = µLateral N (2.1.3)

2.1.2.2. Coupled Model

For many three dimensional systems friction in one direction affects the friction in the
other direction. The initiation of sliding is often described by an elliptical failure envelop
on the friction force space:

(FAxial / µAxial) 2 +(FLateral / µLateral) 2 = N2 (2.1.4)

Direction of slip is normal to the slip surface of (2.1.4) (this is termed the associated flow).
Therefore, slip is not always in the direction of the friction force. In the special isotropic
friction case, where the two friction coefficients are equal, the slip surface becomes a circle,
and slip surface of (2.1.4) becomes equivelant to (2.1.1).

SR.16.12645 - 6 - Unrestricted

2.2. Mathematical Formulation of the Berms Model

2.2.1. Description of the Berms Model

The model provides lateral resistance as a functional of the lateral displacement history
only. It does not consider coupling of axial and lateral effects.

Each berm is described by its volume V, and location x. Here “berm volume” means the
volume per unit length along the pipeline, which is really the cross sectional area of the
berm.

Berms can be on either side of the pipe: the ones that resist increases in the lateral pipe
displacement u will be referred to as “positive berms” whereas “negative berms” are on the
other side of the pipe. A variable ξ is introduced, which takes the value ξ = 1 for a
positive berm, and ξ = -1 for a negative berm.

For simplicity, consider first berms that are concentrated at a point. As the pipe moves it
pushes a berm in front of it. The resistance q provided by the berm depends on the
volume V of the berm, which in turn changes in a specified way with increasing
displacement, in such a way that for large displacements it converges to an equilibrium,
steady state value Vequil, from either above, or from below, as defined by two volume-
displacement curves.

If the pipe changes the direction of motion, it leaves a berm behind. As a result, there may
be any number of berms on the seafloor. If the pipe runs into a berm, it engulfs it. In the
process, the volume of the current berm being pushed by the pipe is increased by the
volume of the engulfed berm. This gives an upwards jump in the resistance to movement,
with the new resistance being based on the sum of the two volumes. This new resistance
will then again evolve acoording to one of the two (upper or lower) volume-displacement
curves until the next berm is encountered, or the direction of movement changes.

The “input parameters” to this basic model are 3 functions: a berm volume-resistance
relation, and upper and lower volume-displacement relations, that describe how a berm
volume larger or smaller than the equilibrium value would converges to the equilibrium
value as the displacement increases.

In applications it is more convenient to specify resistance-displacement relations, than
volume-displacement relations, since the former can be measured directly during a test, and
is more often displayed in publications or reports about such tests. Clearly the volume-
displacement relation can be derived from the resistance-displacement relation, and vice-
versa, using the volume-resistance relations. Thus the implementation of the model is
based on specifying a volume-resistance relation, and two force-displacement relations as
input to the model. These relationships will be referred to as input functions. In an
implementation of the model they may be referred to as user-defined functions (e.g. by
piecewise linear interpolation between values provided by the user). These input functions
need to be defined from two tests: one starting with a large berm and monitoring how
berm volume and resistance to movement evolves, and another starting with no berm.

2.2.2. Formulation of the Berms Model

Concentrating the berm at a point, as assumed in the previous section, leads to a jump in
the resistance-displacement relation whenever a berm is engulfed. Such jumps are not only
physically unrealistic, but also cause convergence difficulties in numerical computations. In

SR.16.12645 - 7 - Unrestricted

this section the jumps are removed by introducing a mobilisation displacement into the
formulation.

The mobilisation displacement is assumed to be a function of berm volume, V, so that it
can be written as,

umob = umob(V) (2.2.1)

where

umob = mobilisation displacement to mobilise the full resistance of the berm;

umob(.) = input functioni; gives mobilisation displacement for the berm resistance as a function of berm
volume.

If a berm is being pushed over by the pipe it is referred to as the sliding berm. The
resistance provided by this berm is then written as,

q = ξ q(V) (2.2.2)

where

q = resistance provided by berm (force per unit length), positive when the force which the pipe
exerts on the soil is in the increasing x and u direction.

q(.) = input function, giving the magnitude of the berm resistance as a function of berm volume V.
Consider the evolution of berm volume as the pipe pushes it along. If one starts with a
small berm, the berm will increase in volume until it reaches a steady-state condition at
which the berm remains constant. Tests suggest that this occurs over a few pipe diameters.
This means that there is an equilibrium berm volume, Vequil. On the other hand, if the
berm is larger than the equilibrium size, then material from the berm will tend to be left
behind, as the pipe is riding over the berm. In this case the volume of the berm is
decreasing as the pipe continues to push the berm over. This berm volume evolution is
best described by providing two force-displacement relationships that can readily be
determined experimentally:

a) The first force-displacement relationship to be provided is determined by pushing over a very
large berm (it must be at least as large as the largest berm that will encountered for the
displacement history for which the model is to be applied).

b) The second force-displacement relationship is determined by starting at zero berm volume, and
applying displacements until an equilibrium value of the resistance is reached.

These two force displacement relations can be written as

R = R(u) (2.2.3)

and

r = r(u), (2.2.4)

respectively, where

R = resistance for berm volume exceeding the equilibrium value (decreasing monotonically with
increasing displacements u and converging to a value R = qequil as u ∞);

i “User-defined function” means a function defined by input parameters to the model, e.g. by piecewise

linear interpolation between points points defined as part of the input parameters.

SR.16.12645 - 8 - Unrestricted

r = resistance for berm volume smaller than the equilibrium value (increasing monotonically and

converging to a value r = qequil as u ∞);

R(.) = user-specified function, determined from a test starting with a very large berm volume, and
pushing it over with the pipe until an equilibrium resistance qequil is reached;

r(.) = user-specified function, determiend from a test starting with zero berm volume, and increasing
the displacements of the pipe until an equilibrium resistance is reached.

u = lateral pipe displacement (During tests to determine the functions R(.) and r(.), the
displacement u is the pipe displacement. However in the application of the model for other
displacement histories the argument of the functions r(.) and R(.) will in general differ from the
pipe displacement u. In defining r(.), r(0) should be taken to be the resistance at zero berm
volume. This is the minimum resitance, and may include the sand-pipe friction, if this is not
included separately. On the other hand for the function R(.), the choice of the point where u=0
does not matter: e.g. one can take the displacement to be zero at the largest expected berm
volume. One might then also extrapolate the function R(.) for negative displacements, to
represent larger than expected bermsii.

The above resistance functions implicity also define the evolution of berm volume as a
function of displacement. Indeed, the evolution of the volume can be written as

V = V(R(u)) for above equilibrium berm volumes (2.2.5)

V = V(r(u)) for below-equilibrium berm volumes (2.2.6)

where

V = berm volume, as before

V(.) = inverse function to the function q(.) in q = q(V) defined in Eq. 2.2; this provides the volume of
the berm as a function of the resistance

Although the model accounts for berm volume reduction, as material is left behind, it does
not account for the influence the material left behind may have on the pipe, if during a
subsequent cycle the pipe comes back to the left-behind material. Thus in essence the
model can represent the resistance forces involved in going over a berm, but once the pipe
has gone over a berm, the original berm is lost.

So far only the resistance against movement provided a single berm being pushed along by
the pipe has been described. In general several berms will be present. In this case the
status of each berm may be classified as follows:

a) The berm is sliding if the pipe has reached the location of the berm (u=x), and is
pushing the berm along. The sliding berm offers the full resistance q=q(V), as
defined by Eq. 2.2. There can be only one sliding berm at the time, because any
other berm that the pipe runs into coalesces into the sliding berm.

b) The berm is engaged if the pipe comes within one mobilisation displacement of it.
In this case the berm starts to offer some resistance to the pipe. Over the
mobilisation displacement the resistance must increase in a continuous fashion
from that provided by the sliding berm just before the engagement, that that of the
combined berms. Engaged berms do not change in volume V or location x, until
the become engulfed by the sliding berm. As a result the energy absorbed by an

ii This would ensure that a solution the resistance model will not fail if larger than expected berm

volumes develop, even though the function R(.) is not properly defined from experimental data in this
range.)

SR.16.12645 - 9 - Unrestricted

engaged berm as the pipe moves towards it elastically recoverable if the pipe
changes the direction of motion.

c) The berm is active if it is sliding or engaged. Otherwise it is inactive.

Consider several berms on the same side of the pipe. Starting with the berm closest to the
pipe, the locations of the berms will be denoted by x1, x2, …(with ξ x1 < ξ x2 < ξ x3 <
…), and the volumes denoted by V1, V2, …, respectivelyiii.

In addition to the actual berm volumes V, it is convenient to work with hypothetical berm
volumes. These represent the volume of the sliding berm if the pipe movement were to
continue to and past the berm considered. There are two hypothetical berms volumes: V’
represents the sliding berm volume just before the pipe reaches the berm considered, and
V” just after. The guiding principle is that when two berms coalesce their volume is added.
Thus,

Vi” = Vi’ + Vi (2.2.7)

in the above

Vi
’ = hypothtical volume that the berm being pushed by the pipe would reach just before the pipe

reaches the ith berm;

Vi” = hypothetical berm volume that would develop if the pipe were pushed to just beyond the ith
berm location;

Vi = current volume of ith berm (before the pipe reaches it).
The procedure to calculate Vi+1’ from Vi” is as follows:

1. Start with Vi”.

2. Calculate the resisting force from qi” = q(Vi”).

3. Calculate the displacement on the reference curves defined by Eqs. 2.3 and 2.4 from

ui” = R-1(qi”) if qi” > qequil

ui” = r-1(qi”) if qi” < qequil

ui” = ∞ if qi” = qequil (no ui value needed subsequently in this case)

in which R-1(.), and r-1(.) denote the inverse functions to R(.) and r(.), as defined in Eqs.
2.3 and 2.4, respectively. This represents the displacement on the reference curve
when the pipe is the ith berm.

4. Calculate the displacement on the reference curve when the pipe reaches the (i+1)th
berm from

ui+1’ = ui” + ξ (xi+1 – xi)

5. Calculate the corresponding soil resistance qi+1 from

qi+1’ = R(ui+1’) if qi” > qequil

qi+1’ = r(ui+1’) if qi” < qequil

iii For simplicity in notation, the same symbols are used to describe berms on both sides of the pipe.

Unless otherwise noted equations or inequalities given in what follows apply for either side of the
pipe. For instance the inequality ξ x1 < ξ x2, really implies two inequalities, one for each side of the
pipe.

SR.16.12645 - 10 - Unrestricted

qi+1’ = qequil if qi” = qequil

6. Calculate the berm volume just before reaching the (i+1)th berm from

Vi+1’ = V(qi+1’)

The above procedure can also be defined by a single equation, as in

Vi+1’ = V(R(R-1(q(Vi”)) + ξ (xi+1 – xi))) if q(Vi”) > qequil

Vi+1’ = V(r(r-1(q(Vi”)) + ξ (xi+1 – xi))) if q(Vi”) < qequil

Vi+1 = Vequil if q(Vi”) = qequil (2.2.8)

Once Vi+1’ is calculated from the Eq. 2.8 or the above procedure, Vi+1” may be calculated
from Eq. 2.7. Thus given V” for the first berm all other V” values can be calculated, by
repeated applications of Eqs. 2.8 and 2.7.

It remains to define V” for the first berm on each side of the pipe, i.e. to define V1”. For
the side towards which the pipe is moving, V1” is simply the volume of the sliding berm;
i.e. V1”=V1.

For the other side, one considers a ficticious change in the direction of movement. Such
change in direction would create a new berm at the pipe location, with zero initial volume.
The parameters for this new berm are then given by,

x0 = u (2.2.9)

V0” = V0 = 0 (2.2.10)

and can be used to initiate the calculation of the ficticious volumes of all berms on the side
which the pipe is moving away from.

Once all current berm parameters are defined (including the ficticious ones), the total
resisting force is calculated from,

q = qsliding + Σ qengaged (2.2.11)

in which

qsliding = contribution from the sliding berm (i.e. the berm for which x=u);

qengaged = contribution from an engaged berm (i.e. a berms for which ξ x – umob ≤ ξ u ≤ ξ x);

Σ = denotes summation over all engaged berms
For the sliding berm, the resistance is calculated from

qsliding = ξ q(Vsliding) (2.2.12)

where Vsliding is the actual volume of the sliding berm, and for the engaged berms, it is

qengaged = (qi”- qi’) (ξ + (u – xi)/umob) (2.2.13)

in which

umob = umob(Vi”) (2.2.14)

SR.16.12645 - 11 - Unrestricted

2.2.3. Implementation for a Finite Increment ∆u of the Berm Model

For implementation of the model, consider a finite displacement increment from a
diplacement u0 to a displacement u. The model is exact for arbitrarily large displacement
increments, and does not require any integration. This section describes how the berm
parameters are updated for an arbitrary increment,

∆u = u – u0 (2.2.15)

The side towards which the pipe moves is characterised by ξ ∆u > 0. Here berms may be
engulfed, but for those that are not engulfed none of the berm parameters (real or
ficticious) do not change as a result of the increment. It is expedient to calculate these
parameters based on conditions at the beginning of the increment. For this purpose the
calculation of the ficticious berm parameters is initiated by

V1” = V1 where ξ ∆u > 0 (2.2.16)

x1 = u0 where ξ ∆u > 0 (2.2.17)

in which V1 refers to the volume of the sliding berm at the beginning of the loadstep. The
calculation of the remaining ficticious berm parameters using Eqs. 2.8 and 2.7, is also based
berm parameters at the beginning of the increment.

On the other side, i.e. the one the pipe is moving away from, the ficticious volumes should
be based on conditions at the end of the increment. They should therefore be initiated by

V0” = 0 where ξ ∆u < 0 (2.2.18)

x0 = u where ξ ∆u < 0 (2.2.19)

and propagated using Eqs. 2.8 and 2.7, and the fact that none of the real berm parameters
change during the increment. (The ficticious parameters do change, however, and it it
therefore important to evaluate them for the end of the increment.)

It remains only to update the parameters for the sliding berm. For this purpose consider
first the case when the sliding berm does not absorb other berms during the increment.
For this case, the contribution to the resistance from the sliding berm is given by

qsliding = ξ R(u1” + ξ (u – x1)) if q1” > qequil (2.2.20)

qsliding = ξ r(u1” + ξ (u – x1)) if q1” < qequil (2.2.21)

qsliding = ξ qequil if q1” = qequil (2.2.22)

in which u1” and x1 are based on conditions at the start of the increment, by following the
procedure for Eq. 2.8, starting with the values from Eqs. 2.18 to 2.19.

The above applies if the sliding berm does not absorb other berms during the increment,
i.e. if no berms are engulfed. Only berms on the side towards which the pipe moves can
become engulfed. The locations xi of engulfed berms at the beginning of the increment
satisfy,

ξ xi ≤ ξ u (2.2.23)

Suppose one or more berms are engulfed in during the increment, and let j denote the
identification number of the last one that is engulfed, i.e. the one for which ξ xi is largest,
but still less than ξ u. In this case the resistance at the end of the increment is given by

SR.16.12645 - 12 - Unrestricted

qsliding = ξ R(uj” + ξ (u – xj)) if qj” > qequil (2.2.24)

qsliding = ξ r(uj” + ξ (u – xj)) if qj” < qequil (2.2.25)

qsliding = ξ qequil if qj” = qequil (2.2.26)

in which again uj” and xj are based on conditions at the start of the increment. Once the
resistance from the sliding berm is calculated its volume may be determined from

Vsliding = V(qsliding) (2.2.27)

where V(.) is the input function defining the volume-resistance relation.

Once all calculations for the increment are complete, the berms are re-numbered
sequentially with i=1 for the sliding berm. No renumbering or other updates are required
for the berms the pipe has moved away from.

2.2.4. Axial and Lateral Coupling of the Berm Model

As described this berm formation does not account for such coupling. If it is desired to
introduce such coupling, an appropriate way do this is to introduce a purely frictional
resistance component for which the axial and lateral effects are coupled, and an additional
component due to berm formation, for which the lateral resistance can reasonably be
assumed to be uncoupled from axial movements. In this case one would specify zero
lateral resistance in the berm formation model when the volume of the berm is zero. The
frictional resistance at zero berm volume can then be included in a coupled frictional
model.

2.2.5. Implementation Considerations of the Berm Model

A difficulty in the implementation of the above-described berms model is the the number
of berms is not known a priori. It depends on the displacement history of the pipe. This
can make storage allocation for the state parameters describing the system challenging. To
simplify this, a maximum number of berms should be specified a priori and storage
allocated for it. If this maximum number is exceeded, the system should be programmed
to “forget” the outermost berm. As long as the berm to be forgotten is not active this will
not give rise to any discontinuity in the response. In the current implementation the total
volume of the forgotten berms on each side is calculated. When the forgotten volume is
significant, it is advisable to repeat the analysis accounting of a larger maximum possible
number of berms.

SR.16.12645 - 13 - Unrestricted

3. COMPUTER CODE

Both the friction model and the berm formation model are implemented in the user
subroutine UMAT of the PSI element of ABAQUS. The pipe-soil interaction must be
modeled using the PSI elements and interaction characteristics (of frictional and berm
formation) must be defined in the user subroutine UMAT. For more details refer to the
User’s Guide in Appendix 1. Input files of example prlblems are listed in Appendix 2.
Fortran source code of the user subroutine UMAT is listed in Appendix 3.

SR.16.12645 - 14 - Unrestricted

4. EXAMPLE SOLUTIONS

4.1. Definition of Model

The berms formulation of the previous section has been implemented as an element in the
NPEX program. This program was developed as the University of Michigan, in a modular
structure, so that new types of elements to be added. This section presents the input and
results from a lateral buckling calculation with NPEX, using the berms model developed.

A heavily concrete-coated, 14-inch pipe is considered, with properties and loading
conditions defined in Table 4.1. The structural strength of the coating is neglected. Only
its weight and buoyancy are considered in the determination of the submerged weight of
the pipe. The steel is assumed to be elastoplastic according to the Von Mises yield
criterion with isotropic strain hardening according to the stress-strain curve shown in Fig.
4.1.

Buckles at a uniform spacing of 800m are considered, and symmetry about the apex of the
buckle, as well as the midpoint between adjacent buckles is exploited so only the pipe from
the apex of the buckle (x=0) to the midpoint between buckles (x=400m) needs to be
modelled.

The pipe elements used are based on the moderate-deflection beam theory, in which the
axial strains at any point on the cross section of the pipe care calculated from

ε = u’ + ½ w’2 - w” y (4.1)

in which u and w denote the displacement components in the axial and lateral directions; y
denotes the distance of the point considered from the centroidal axis normal to the plane
of bending (i.e. from the neutral axis under pure bending); and a prime, as in (.)’ denotes
differentiation with respect to the axial coordinate, x.

The NPEX pipe elements do account for the effect of internal pressure, but they are based
on small strain theory. I.e. the difference between true stresses (defined as force per unit
area after deformation) and nominal stress (defined as force per unit area before
deformation) is neglected. (Indeed if these differences become important, it is
questionable whether beam theory could still provide a good approximation, except
perhaps for special cases. Thus the small strain approximation is judged to be consistent
with the beam theory approximation.)

The discretisation used is as follows: the first 90m from the apex of the buckle (from x=0
to x=90m) are modelled with 200 elements of a constant length, Le=90m/200=0.45m.
This represents the region where significant lateral displacements could develop. Beyond
this point, only axial displacements are expected, feeding into the buckle. This axial feed
region (from x=90m to x=400m) is modelled with 100 of the same elements, but their
length increases in constant steps from Le=0.45m at x=90m, to Le=5.7m at x=400m.

The soil resistance is modelled by adding a frictional component of the resistance, to the
resistance due to the berms.

For the berms component the model described in this report is used. The input functions
are defined as follows:

• The mobilisation displacement function, umob=umob(V), from Eq. 2.1, is defined by
taking the mobilisation displacement to be a constant umob=1cm.

SR.16.12645 - 15 - Unrestricted

• The berm resistance-volume relation, q=q(V), from Eq. 2.2, is defined by
assuming that the resistance q is proportional to the berm volume V. Under this
assumption it does not matter what the constant of proportionality is, so q=V is
used.

• The upper resistance-displacement relation, R=R(u), in Eq. 2.3, is defined by
piecewise linear interpolation from the values shown in Table 4.2. If the
displacement falls outside the range of u values, linear extrapolation is used. A plot
of this relation can be found in Fig. 4.2.

• The lower resistance-displacement relation, r=r(u), in Eq. 2.4, is defined by
piecewise linear interpolation from the values shown in Table 4.3. If the
displacement falls outside the range of u values, linear extrapolation is used. A plot
of this relation can be found in Fig. 4.2.

In addition, to represent pipe embeddment, an initial berm volume corresponding to a
resistance of

qinit / W = 1.12 (4.2)

was used, where qinit = q(Vinit) represents the resistance based on the initial berm volume,
Vinit , and W denotes the submerged weight of the pipe, which is W=3.389kN/m.

For the frictional component, a simple uncouplediv elastic-perfectly plastic model is used
for the axial and lateral friction force, with friction coefficients given in Table 4.1, and
mobilisation displacements of 2cm and 3cm for the axial and lateral directions, respectively.

The loading sequence, and buckling initiation is as follows:

1. The pipe is assumed to be initially straight at stress free. All boundary conditions and soil resistance
elements are active, but not loads have been applied yet.

2. To simulate laying of the pipe, the external pressure is applied together with an equivalent
temperature change, to ensure that the effective axial force in the pipe corresponds to the on-bottom
effective lay tension, Nlay. This equivalent temperature increment is calculated based on the
assumption of elastic behaviour of the pipe, and using thin-walled shell theory based on the diameter
to the midsurfacev, to obtain

∆Tlay = -[Nlay + (1-2ν) ¼ π (D-t)2 pext] /(EA α)

in which ∆Tlay represents a decrease in temperature to compensate for the change in length of the
pipe that occurs before touchdown due to the lay tension and the external pressure; A=π (D-t) t is the
cross sectional area of the pipe; pext=γfw Gsw hsw is the external presssure; and the remaining symbols
are defined in Table 3.1.

(An alternative to this approach, is to apply the external pressure and lay tension before activating the

iv The NPEX program also includes a coupled model based on an elliptical slip condition (i.e. slip

boundary on a plot of axial vs. lateral friction force is an ellipse). Therein slip is modelled in the same
way as the plastic flow of metals, using a flow rule with a direction of slip that is normal to the slip
surface. However for this example, probabily because of the high axial friction coefficient, it was
found that the coupled model could result in the largest buckling lateral displacement occurred away
from the apex of the intended buckle (x=0), where there was more axial slip. For this reason the
coupled model is not used for this example.

v This is not the most accurate approximation, but it is the same approximation made in the FE
formulation, by integration of the virtual work at the midsurface of the pipe wall, and therefore it is the
approximation that will result in the correct effective axial force in the FE analysis.

SR.16.12645 - 16 - Unrestricted

soil resistances and boundary conditions for axial displacements, but the current NPEX program does
not allow changes in boundary conditions and the existence of elements over time.)

3. An imperfection to initiate the lateral buckle is introduced by pushing the pipe laterally at the apex in
a displacement controlled fashion, using a bumper element. This bumper element connects the node
at the apex of the buckle to a bumper node with a specified lateral displacement, which during this
step increases from 0 to 0.12m, and subsequently remains at 0.12m. Whenever the lateral
displacemen of the pipe exceeds that of the bumper node, the bumper element is not active.
However, any penetration of the bumper node into the pipe is resisted by a stiff linear spring
(stiffness of 6.16MN/m).

4. The internal pressure is applied.

5. Apply the temperature change.vi

4.2. Results

The calculations have been performed for 5 cycles of heating to 77°C above ambient,
followed by cooling back to the ambient temperature. The results are shown in Figs. 4.3 to
4.17. Therein integer cycle numbers 1,2,3,… represent the end of the heating cycle
(temperature rise of 77°C above ambient), whereas cycle numbers 1.5, 2.5, 3.5, …
represent the end of the cooling cycle (ambient temperature).

The following observations can be made from the plots of the results obtained by using
NPEX code:

1. Plasticity occurs only at the first heating cycle; subsequent cycles are elastic (Fig. 4.17).

2. The maximum axial strains are 0.73% in compression (Fig. 4.13), and 0.52% in tension (Fig. 4.14).
These occur at the end of the first heating cycle, at the apex of the buckle at diametrically opposite
sides. In reality these strains could be affected by point-to-point variations in wall thickness and/or
yield strength, and by the stiffening effect of the concrete coating, neither of which is included in this
analysis.

3. The lateral displacement at the apex of the buckle in the hot condition increases slightly from cycle
to cycle (Figs. 4.3, 4.6 and 4.10), but this is largely prevented by the build-up of berms, which
provide increasing resistance at the apex of the buckle (Fig. 4.9).

4. At the end of the 2nd heating cycle, the bending moment at the apex of the buckle is 6% lower than at
the first cycle. This reduction increases to 14% at the 5th cycle. (Figs. 4.4, 4.7 and 4.11.)

5. The effective axial force at the buckle increases slightly from cycle to cycles, as the pipe becomes
increasingly constrained between berms. (Figs. 4.8 and 4.12.)

6. The very high axial soil frictional resistance used results in high axial forces at the midpoint between
buckles (x=400m), close to the fully constrained axial force. (Fig. 4.8)

The lateral displacement results obtained by using the ABAQUS are significantly smaller
than those of NPEX results. The results obtained by using ABAQUS are listed in Figs.
4.18 to 4.20 for comparison with the corresponding results obtained by using NPEX in

vi To track the solution path a special algorithm is needed, because the temperature reaches a maximum

then drops and increases again. For this purpose an algorithm is used in which the increment in lateral
displacement at the apex of the buckle is controlled at each increment. Initially, while the pipe is in
contact with the bumper, very small lateral displacement increments are used. However once the pipe
looses contact with the bumper, the algorithm is switched to a Riks-type approach in which the
increment in archlength of the solution path in load-displacement space with a suitably defined norm is
controlled at every timestep.

SR.16.12645 - 17 - Unrestricted

Figs. 4.3 to 4.5. The maximum values at the extreme temperature values of each cycle are
listed in Table 4.5 for comparison purposes.

Description Symbol Value Units
Outer Pipe Diameter D 0.3556 m
Wall Thickness t 0.0173 m
Coating Thickness tc 0.105 m
Young's Modulus E 185207 MPa
Poisson's Ratio ν 0.3 -
Coefficient of Thermal Expansion α 1.24E-05 1/°C
Unit Weight of Fresh Water γfw 9.81 kN/m3
Specific Weight of Contents Gp 0.1 -
Specific Weight of Steel Gs 7.868 -
Specific Weight of Coating Gc 2.963 -
Specific Weight of Seawater Gsw 1.025 -
Water Depth hsw 140 m
Axial Friction Coefficient µA 2.484 -
Lateral Friction Coefficient µL 0.4? -
Internal Pressure pint 14.4 MPa
Temperature Rise ∆T 77 °C
Spacing of Lateral Buckles H 800 m
Effective on Bottom Lay Tension Nlay 578 kN

Table 4.1: Pipe properties and Loading conditions.

Displacement, u (m) 0 0.07 0.14 0.5 1.12 1.5
Normalised Resistance,
R(u)/W

1.6 1.52 1.2 0.72 0.4 0.4

Table 4.2: Data defining the input functin for the upper resistance-displacement relation, R=R(u), by
piecewise linear interpolation, or extrapolation, where needed.

Displacement, u (m) 0 0.5 1 1.5 3
Normalised Resistance, r(u)/W 0 0.2 0.32 0.4 0.4

Table 4.3: Data defining the input functin for the upper resistance-displacement relation, R=R(u), by
piecewise linear interpolation, or extrapolation, where needed.

SR.16.12645 - 18 - Unrestricted

Plastic Strain Stress
MPa

0 270
0.0001 294.165
0.0002 306.9023
0.0005 324.5903
0.001 338.6449

0.0015 347.1468
0.002 353.3081
0.003 362.1781
0.004 368.6062
0.005 373.6707
0.006 377.8603
0.008 384.5667
0.01 389.8505

0.012 394.2215
0.015 399.6379
0.02 406.7308
0.03 416.942
0.04 424.3421
0.05 430.1724
0.06 434.9955
0.07 439.1155
0.08 442.716
0.09 445.9163
0.1 448.7987

0.15 460.066
0.2 468.2315

0.25 474.6648
0.3 479.9867

0.35 484.5329
0.4 488.5057

0.45 492.037
0.5 495.2176
1 516.6603
5 570.098

Table 4.4: Data defining the stress-strain relationship for the steel pipe. Piecewise linear interpolation
between the data provided is used. (This is the stress strain curve used in a small strain
formulation. This should be used as a true-stress strain curve if a large strain formulation is
being used to solve the same problem, since it is found in [1] based on a large strain
formulation that the small strain approximation for pipe bending is best when the true stress-
strain relation is used as inut.)

SR.16.12645 - 19 - Unrestricted

Temperature
Cycle

Temperature
Change
(deg C)

Maximum
Lateral

Displacement
(m)

Maximum
Bending
Moment
(MN-m)

Maximum
Effective
Tension

(MN)
1st Heat-up 77 1.34 / n.pex 0.575 1.18
Cool-down 0 0.68 / n.pex 0.072 -0.35
2nd Heat-up 77 1.36 0.542 1.18
Cool-down 0 0.71 0.072 -0.38
3rd Heat-up 77 1.37 0.520 1.21
Cool-down 0 0.73 0.072 -0.39
4th Heat-up 77 1.36 0.507 1.24
Cool-down 0 0.74 0.072 -0.40
5th Heat-up 77 1.36 0.502 1.25
Cool-down 0 0.75 0.073 -0.41

Table 4.5: Comparisons of the maximum values obtained by using ABAQUS / NPEX.

0

50

100

150

200

250

300

350

400

450

500

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Plastic Strain

St
re

ss
, M

Pa

Fig. 4.1: Stress-strain curve used for the steel. (See Table 4.4 for numerical data.)

SR.16.12645 - 20 - Unrestricted

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5

Pipe Displacement Lateral Displacement, u (m)

So
il

R
es

is
ta

nc
e

/ P
ip

e
W

ei
gh

t

R=R(u)

r=r(u)

Fig. 4.2: Resistance-Displacement Relations describing covergence of the berm to the equilibrium

size. A larger berm diminishes by leaving material behind, whereas a smaller berm grows
until it reaches the equilibrium size.

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5
Lateral Displacement

Te
m

pe
ra

tu
re

 C
ha

ng
e,

 d
eg

C

Fig. 4.3: History of temperature and lateral displacement at the apex of the buckle.

SR.16.12645 - 21 - Unrestricted

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00 2.50E+00
Lateral Displacement

Be
nd

in
g

M
om

en
t,

M
N

m

Fig. 4.4: History of bending moment and lateral displacement at the apex of the buckle.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00 2.50E+00

Lateral Displacement

Ef
fe

ct
iv

e
Ax

ia
l F

or
ce

, M
N

Fig. 4.5: History of effective axial force and lateral displacement at the apex of the buckle.

SR.16.12645 - 22 - Unrestricted

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

Axial Coordinate, x (m)

La
te

ra
l D

is
pl

ac
em

en
t,

v
(m

)
1 1.5

2 2.5

3 3.5

4 4.5

5

Fig. 4.6: Lateral Displacements at the end of each heating and cooling cycle. Integer cycle numbers

1,2,3,… represent the end of the heating cycle (temperature rise of 77°C above ambient),
whereas cycle numbers 1.5, 2.5, 3.5, … represent the end of the cooling cycle (ambient
temperature).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35 40 45 50

Axial Coordinate, x (m)

Be
nd

in
g

M
om

en
t,

M
 (M

N
m

)

1 1.5

2 2.5

3 3.5

4 4.5

5

Fig. 4.7: Bending Moment at the end of each heating and cooling cycle.

SR.16.12645 - 23 - Unrestricted

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400

Axial Coordinate, x (m)

Ef
fe

ct
iv

e
Ax

ia
l F

or
ce

, N
 (M

N
)

1 1.5

2 2.5

3 3.5

4 4.5

5

Fig. 4.8: Effective axial Force at the end of each heating and cooling cycle. Positive axial force

represents tension.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50

Axial Coordinate, x (m)

So
il

R
es

is
ta

nc
e

/ P
ip

e
W

ei
gh

t

1 1.5

2 2.5

3 3.5

4 4.5

5

Fig. 4.9: Lateral soil resistance force normalised with respect to submerged weight of pipe at the end of

each heating and cooling cycle.

SR.16.12645 - 24 - Unrestricted

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6
Cycle Number

La
te

ra
l D

is
pl

ac
em

en
t (

m
)

Fig. 4.10: Lateral displacement at the apex of the buckle at the end of each heating and cooling cycle.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6
Cycle Number

Be
nd

in
g

M
om

en
t (

M
N

m
)

Fig. 4.11: Bending moment at the apex of the buckle at the end of each heating and cooling cycle.

SR.16.12645 - 25 - Unrestricted

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 1 2 3 4 5 6

Cycle Number

Ef
fe

ct
iv

e
Ax

ia
l F

or
ce

 (M
N

)

Fig. 4.12: Effective Axial force at the apex of the buckle at the end of each heating and cooling cycle.

Positive axial force represents tension.

-0.80%

-0.70%

-0.60%

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%
0 1 2 3 4 5 6

Cycle Number

Ax
ia

l S
tra

in
 o

n
C

om
pr

es
si

on
 S

id
e

Fig. 4.13: Axial strain on the compression (concave) side at the apex of the buckle at the end of each

heating and cooling cycle.

SR.16.12645 - 26 - Unrestricted

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0 1 2 3 4 5 6
Cycle Number

Ax
ia

l S
tra

in
 o

n
Te

ns
io

n
Si

de

Fig. 4.14: Axial strain on the tension (convex) side at the apex of the buckle at the end of each heating

and cooling cycle.

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

0 1 2 3 4 5 6

Cycle Number

Ax
ia

l S
tre

ss
 o

n
C

om
pr

es
si

on
 S

id
e

(M
Pa

)

Fig. 4.15: Axial stress on the tension (convex) side at the apex of the buckle at the end of each heating

and cooling cycle. Positive stress indicates tension.

SR.16.12645 - 27 - Unrestricted

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6
Cycle Number

Ax
ia

l S
tre

ss
 o

n
Te

ns
io

n
Si

de
 (M

Pa
)

Fig. 4.16: Axial stress on the compression (concave) side at the apex of the buckle at the end of each

heating and cooling cycle. Positive stress indicates tension.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0 1 2 3 4 5 6
Cycle Number

Eq
ui

va
le

nt
 U

ni
ax

ia
l P

la
st

ic
 S

tra
in

Compression Side
Tension Side

Fig. 4.17 Equivalent uniaxial platic strain at the apex of the buckle at the end of each heating and

cooling cycle.

SR.16.12645 - 28 - Unrestricted

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5
Lateral Displacement (m)

Te
m

pe
rtu

re
 C

ha
ng

e
(d

eg
 C

)

Fig. 4.18 History of temperature and lateral displacement at the apex of the buckle – results from

analysis using ABAQUS.

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

0 0.5 1 1.5
Lateral Displacement (m)

Be
nd

in
gM

om
en

t (
N

-m
)

Fig. 4.19 History of bending moment and lateral displacement at the apex of the buckle – results from

analysis using ABAQUS.

SR.16.12645 - 29 - Unrestricted

-1.0E+06

-5.0E+05

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

0 0.5 1 1.5
Lateral Displacement (m)

Ef
fe

ct
iv

e
Ax

ia
lT

en
si

on
 (N

)

Fig. 4.20 History of effective axial force and lateral displacement at the apex of the buckle – results

from analysis using ABAQUS.

SR.16.12645 - 30 - Unrestricted

5. CONCLUSIONS

A berm formation model is developed and implemented in ABAQUS. The model includes
options of the coupled and uncoupled frictional interfaces.

The developed computer model is verified by solving example problems and by comparing
the results with the results obtained by in-house code NPEX.

SR.16.12645 - 31 - Unrestricted

6. REFERENCES

1. Peek, R., (2001), "Wrinkling of Tubes in Bending using Large Strain Continuum Theory,"
International Journal of Solids and Structures, Vol. 29, pp. 709-723. (SIEP Disclosure/Ref. No. EP
2000-8171)

2. ABAQUS/Standard User’s Manual, Version 6.5, HKS Inc., 2004

SR.16.12645 - 32 - Unrestricted

APPENDIX 1. USER’S GUIDE: BERM FORMATION MODEL

A1.1. General

In order to model the soil’s resistance to the axial and the lateral displacements of pipelines
on the seabed the pipe-soil interaction (PSI) element of ABAQUS of type “PSI24” is used
[2]. The PSI24 element is a ABAQUS provided, 2-dimensional, 4-node element, and its
purpose is to model the axial and the lateral pipe-soil interactions on even seabed. The two
nodes on one side of this nominally rectangular-shaped element are attached on the pipe
and move with the pipe, while the other two nodes on the other side are fixed in space,
thus the deformation of the PSI element represents the axial and the lateral displacements
of pipe on seabed. The responses of the PSI element to the pipe displacement, or the
material properties of the PSI element represent the response characteristics of the axial
and the lateral pipe-soil interface, and these are defined via a user subroutine UMAT. This
report provides the user subroutine UMAT for ABAQUS. Formulation and the theoretical
background of the material model used in UMAT is presented in Appendix 2. Source coe
of the use subroutine UMAT is provided in Appendix 3. The associated input parameters
must be provided in the files <jobname>.inp and <jobname>.brm. <jobname>
represents the name of the ABAQUS job. Following must be done by the user in order to
use the frictional and soil berm formation models in ABAQUS:

• Develop the ABAQUS model including the pipe elements, material properties,
boundary conditions, and loading conditions.

• Generate PSI24 elements to model the pipe-soil interactions. Two nodes on one
side of the element must be attached on the pipe, and the other two nodes must be
fixed in space Reference the ABAQUS user’s manual in Ref. [2] for information
on the PSI element. Example is presented in Appendix 2.

• In the <jobname>.inp file define the 7 input parameters. Definition of the 7 input
parameters and an example are presented in Appendix 2.

• Tabulated berm formation model data must be provided in the file
<jobname>.brm, if the berm formation model is used to represent the pipe-soil
interaction. Example is presented in Appendix 2.

• The user subroutine UMAT must be linked to ABAQUS. Source list of UMAT is
presented in Appendix 3.

A1.2. Generation of PSI Elements in ABAQUS

Refer to the ABAQUS user’s guide in Ref. [2] for the usage of the PSI24 element. The PSI
elements must be generated and attached to the pipe sections which interact with seabed.
For example, the following ABAQUS input lines are used to generate 300 PSI elements,
and to assign the name SOIL for the PSI elements. The nodes 1 through 301 are
commonly shared by both pipe and PSI elements, thus the pipe and PSI elements are
attached to each other through these nodes. The nodes 1001 through 1301 are on the
other side of the PSI elements and must be fixed in space later in the section where
boundary conditions are defined (not shown below).

…

*element, type=psi24, elset=soil

SR.16.12645 - 33 - Unrestricted

1001, 1, 2, 1002, 1001

*elgen, elset=soil

1001, 300, 1, 1

…

A1.3. Definition of the 7 Input Parameters in <jobname>.inp file

Input parameters are defined in the <jobname>.inp file in the following format:

…

*pipe-soil interaction, elset=soil

*pipe-soil stiffness, type=user, prop=7, variables=100

<YY1>, <YY2>, <UM1>, <UM2>, <NB>, <QINIT>, <WEIGHT>

…

where the seven parameters are defined as:

• YY1 = Friction force limit per unit pipe length in the pipe axial direction.

• YY2 = Absolute value of YY2 is the friction force limit per unit pipe length in
the pipe lateral direction. The axial and the lateral frictions defined by YY1 aand
YY2 are coupled with the elliptical slip surface and the normal flow rule if YY2 is
positive. They are uncoupled (with the rectangular slip surface) if YY2 is negative.

• UM1 = Mobilization displacement in the pipe axial direction

• UM2 = Mobilization displacement in the pipe lateral direction

• NB = Maximum number of soil berms on each side of pipe. If larger
number of berms are formed during simulation the berms that are located farthest
from the initial pipe location will be removed automatically. If NB = 0, the berm
formation model is de-activated and only the frictional interaction is calculated.
Both frictional and the berm formation model is calculated when NB is positive.

• QINIT = Initial berm resistance force per unit pipe length in both lateral
directions of the pipe. This represents the initial berm size surrounding the pipe at
its initial location. Embedment of pipe at its initial location causes this additional
soil resistance. If this initial resistance is larger than the equilibrium value
QEQUIL, the force-displacement relation for the first cycle will reach a maximum
at a displacement UM(QINIT), i.e. the mobilization displacement UM
corresponding to a berm resistance of QINIT.

• WEIGHT = Submerged pipe weight per unit length

Following is an example input lines in <jobname>.inp file:

…

*pipe-soil interaction, elset=soil

*pipe-soil stiffness, type=user, prop=7, variables=100

2.484, -0.4, 0.02, 0.03, 10, 1.12, 3389.

…

SR.16.12645 - 34 - Unrestricted

A1.4. Coupled Friction Model

If NB is positive the axial and the lateral frictions are coupled based on the elliptical slip
condition, and the normal flow rule (similar to the yield surface of the metal plasticity).
Therefore,

• If (Y1/YY1)2 + (Y2/YY2) 2 < 1, then the frictional slip does not occur and the
pipe sticks on the seabed.

• If (Y1/YY1)2 + (Y2/YY2) 2 = 1, then the pipe slips on the seabed in the direction
normal to the elliptical slip surface.

in which

Y1 = shear force between pipe and seabed in the pipe axial direction

Y2 = shear force between pipe and seabed in the pipe lateral direction

A1.5. Uncoupled Friction Model

If NB = 0 the axial and the lateral frictions are independent (un-coupled):

• If Y1 < YY1 and Y2 < YY2, then the frictional slip does not occur and the pipe
sticks on the seabed.

• If Y1 = YY1 or Y2 = YY2, then the the pipe slips on the seabed in either axial or
lateral direction.

The corresponding slip surface is thus rectangular. Normal directions are not defined at
the four corners of the rectangle, but this does not cause any numerical problem since the
shear forces are calculated for the prescribed displacements in the finite element calculation
processes.

A1.6. Berm Formation Model

If NB is positive, then the berm formation model is activated, and berm resistances are
calculated. The tabulated data for the berm model must be input by the user in the file
<jobname>.brm. The lateral resistance of the soil berm model acts independently from
the axial friction force (i.e. uncoupled). The tabulated data for the berm model must be
input in the following format:

<nqv>
<BV,BQ_1>
<BV,BQ_2>
..
<BV,BQ_nqv>
<nqum>
<UM,BQ_1>
<UM,BQ_1>
..
<UM,BQ_nqum>
<ncru>
<U,CR_1>
<U,CR_2>
..
<U,CR_ncru>
<nsru>
<U,SR_1>
<U,SR_2>
..
<U,SR_nsru>

where parameters are defined as follows:

SR.16.12645 - 35 - Unrestricted

• Nqv = Number of data sets <BV, BQ>

• BV, BQ = Berm volume, and berm resistance force per unit pipe length data set.
Nqv sets of these data are used to define piecewise linear relationships. BV values
must be monotonically increasing.

• Nqum = Number of data sets <UM, BQ>

• UM, BQ = Berm mobilization, and berm resistance force per unit pipe length data
set. Nqum sets of these data are used to define piecewise linear relationships. UM
values must be monotonically increasing.

• Ncru = Number of data sets <U, CR>

• U, CR = Berm displacement, and berm resistance force per unit pipe length
data set (upper response). Ncru sets of these data are used to define piecewise
linear relationships. U values must be monotonically increasing. Only the
differences between the U values input are important. Results are invariant to
constant shift in U values. The last two values of the berm resistance must be
identical and they are defined as the equilibrium resistance QEQUIL.

• Nsru = Number of data sets <U, SR>

• U, SR = Berm displacement, and berm resistance force per unit pipe length
data set (lower response). Nsru sets of these data are used to define piecewise
linear relationships. U values must be monotonically increasing. Only the
differences between the U values input are important. Results are invariant to
constant shift in U values. The last two values of the berm resistance must be
identical, and they must be equal to the equilibrium resistance QEQUIL.

Following is an example <jobname>.brm file:
2 nqv
 0.0 0.0 BV,BQ
 1.0 1.0 BV,BQ
2 nqum
 0.01 0.0 UM,BQ
 0.01 1.0 UM,BQ
6 ncru
 0.0 1.6 U,CR
 0.07 1.52 U,CR
 0.14 1.2 U,CR
 0.5 0.72 U,CR
 1.12 0.4 U,CR
 1.5 0.4 U,CR
5 nsru
 0.0 0.0 U,SR
 0.5 0.2 U,SR
 1.0 0.32 U,SR
 1.5 0.4 U,SR
 3.0 0.4 U,SR

SR.16.12645 - 36 - Unrestricted

APPENDIX 2. INPUT EXAMPLES: BERM FORMATION MODEL

A2.1. Example.inp (ABAQUS model input file)
*heading
Shell SIEP, 2D Berms Soil Interaction Model
…
…

A2.2. Example.brm (Berm Model Parameters)

2 nqv
 0.0 0.0 BV,BQ
 1.0 1.0
2 nqum
 0.01 0.0 UM,BQ
 0.01 1.0
6 ncru
 0.0 1.6 U,CR
 0.07 1.52
 0.14 1.2
 0.5 0.72
 1.12 0.4
 1.5 0.4
5 nsru
 0.0 0.0 U,SR
 0.5 0.2
 1.0 0.32
 1.5 0.4
 3.0 0.4

SR.16.12645 - 37 - Unrestricted

APPENDIX 3. SOURCE CODE: BERM FORMATION MODEL

ABAQUS uses the user supplied subroutine UMAT in order to simulate the friction and
the berm models of the pipe-soil interaction. ABAQUS execution procedures are
described in volume 1 of ABAQUS manual [2]. The pipe-soil interface is modeled using
the PSI elements (Pipe-Soil Interface element). The friction and the berm interface models
are simulated through the non-linear material behaviours of the PSI elements. The
subroutine UMAT is used to input the input parameters which define the interface
properties, and to simulate the friction and the berm models.

SR.16.12645 - 38 - Unrestricted

 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
 1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,
 2 TIM,DTIM,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS,
 3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,
 4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)
c
 INCLUDE 'ABA_PARAM.INC'
C
 CHARACTER*80 MATERL
 DIMENSION STRESS(NTENS),STATEV(NSTATV),
 1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
 2 STRAN(NTENS),DSTRAN(NTENS),TIM(2),PREDEF(1),DPRED(1),
 3 PROPS(NPROPS),COORDS(3),DROT(3,3),
 4 DFGRD0(3,3),DFGRD1(3,3)
C
 DIMENSION ESTIFF(3),EELAS(3)
c
 character*256 filename1,filename2,jobname,outdir
c
 common/kdata17/aelprop17(1000),aelpar17(1000),elk17(2,2),elp17(2),
 & elp_l17(2)
 common/kdata17I/ielprop17(1000),ielpar17(1000),
 & nielprop17,naelprop17,nielpar17,naelpar17,
 & ihave17
 common/kdata27/aelprop27(1000),aelpar27(1000),elk27(2,2),elp27(2),
 & elp_l27(2),
 & rup(2,100),rlow(2,100)
 common/kdata27I/ielprop27(1000),ielpar27(1000),
 & nielprop27,naelprop27,nielpar27,naelpar27,
 & ihave27
 common/kdata/u(2,3),ub_l(2,3),u0(2,3), x(2,3)
 common/kdataI/ien(3), lm(3), id(2,3),jread, info
C
C ---
C UMAT FOR SHELL SIEP Berms model
C ---
C
 if(ndi.ne.2.or.nshr.ne.0) then
 write(0,*) '*** UMAT: incorrect dimensions'
 call xit
 end if
c
c Define element storage requirements for element 17 end 27:
c
 nen=1 !number of element nodes used
 nninc=1 !number of nodes
 ndof=2 !number of degrees of freedom per node needed
 idof=2
 nsd1=1 !number of coordinates per node used by element
 nen=3
 ndof4bc=2
 nnodes=3
 nsd=2
 neldof=2
c
 iel=noel
 ielflag=0
c
c force scale factor
c
 WL=props(7)
c write(0,*) 'all forces scaled with:', WL
c
c define properties (once) for element 17
c
 if(ihave17.eq.0) then
 ihave17=1
c
c get properties for element 17
c
 ielprop17(1)=nninc
 aelprop17(1)=WL*props(1)
 aelprop17(2)=WL*props(2)
 aelprop17(3)=WL*props(1)/props(3) !axial stiffness SKK1
 aelprop17(4)=WL*abs(props(2)/props(4)) !transverse stiffness SKK2
 write(0,*)'stiffness=',aelprop17(3),aelprop17(4)
c

SR.16.12645 - 39 - Unrestricted

c Define element storage requirements for element 17:
c
 naelpar17=2 !number of real element parameters needed
c nielpar17=0 !number of integer element parameters needed
 nielpar17=1 !number of integer element parameters needed
 naelprop17=4 !number of element properties needed (defined above)
 nielprop17=1 !number of integer element properties needed (defined
above)
 end if
c
c n27 (= nb); n27=0 -> element 17 only
c
 n27=int(props(5))
c
c define properties (once) for element 27
c read functions (once) for element 27
c
 if(ihave27.eq.0.and.n27.gt.0) then
 ihave27=1
 call getoutdir(outdir, lenoutdir)
 call getjobname(jobname, lenjobname)
 filename1=outdir(1:lenoutdir) // '/'
 & // jobname(1:lenjobname) // '.brm'
 write(0,*) ' '
 write(0,*) 'resistance data read from :'
 write(0,*) filename1
c
 open(91,file=filename1,status='old')
c
c read V-Q
c
 j=1
 read(91,*,end=1000,err=1000) nqv
 do i=1,nqv
 read(91,*,end=1000,err=1000) xx,yy
 aelprop27(j+i)=xx
 aelprop27(j+nqv+i)=yy*WL
 end do
 j=j+2*nqv
c
c read UM-BQ
c
 read(91,*,end=1000,err=1000) nqum
 do i=1,nqum
 read(91,*,end=1000,err=1000) xx,yy
 aelprop27(j+i)=xx
 aelprop27(j+nqum+i)=yy*WL
 end do
 j=j+2*nqum
c
c read U-CRn
c
 read(91,*,end=1000,err=1000) ncru
 do i=1,ncru
 read(91,*,end=1000,err=1000) xx,yy
 aelprop27(j+i)=xx
 aelprop27(j+ncru+i)=yy*WL
 end do
 j=j+2*ncru
c
c read U-SRn
c
 read(91,*,end=1000,err=1000) nsru
 do i=1,nsru
 read(91,*,end=1000,err=1000) xx,yy
 aelprop27(j+i)=xx
 aelprop27(j+nsru+i)=yy*WL
 end do
 j=j+2*nsru
 jread=j
c
 go to 2000
1000 continue
 write(0,*) '*** UMAT: I/O error reading functions'
 call xit
2000 continue
c

SR.16.12645 - 40 - Unrestricted

c get properties for element 27
c
 nb=int(props(5))
 qinit=props(6)*WL
c
 ielprop27(1)=nninc
 ielprop27(2)=idof
 ielprop27(3)=nb
 ielprop27(4)=nqv
 ielprop27(5)=nqum
 ielprop27(6)=ncru
 ielprop27(7)=nsru
c
 aelprop27(1)=qinit
c
c Define element storage requirements for element 27:
c
 naelpar27=4*nb+2 !number of real element parameters needed
 nielpar27=2 !number of integer element parameters needed
 naelprop27=jread !number of element properties needed
 nielprop27=7 !number of integer element properties needed
 end if
c
c get statevarables
c
 is=0
 do i=1,naelpar17
 aelpar17(i)=statev(i)
 end do
 is=is+naelpar17
 do i=1,nielpar17
 ielpar17(i)=int(statev(is+i))
 end do
 is=is+nielpar17
 if(n27.gt.0) then
 do i=1,naelpar27
 aelpar27(i)=statev(is+i)
 end do
 is=is+naelpar27
 do i=1,nielpar27
 ielpar27(i)=int(statev(is+i))
 end do
 is=is+nielpar27
 end if
 xinit=statev(is+1)
 is=is+1
 if(info.eq.0) then
 info=1
 write(0,*) '*** UMAT: nr. of statevariables used:',is
 end if
c
c force initialization the first time
c
 if(xinit.eq.0.0) then
 ielflag=6
 xinit=1.0
 end if
c
c define dummy nodes and system matrices to be able to use the original NPEX routines
c it forced to calculate CLL=1.0 and will also work in arbitray directions
c
 ien(1)=2
 x(1,1)=coords(1)-1.0d0
 x(2,1)=coords(2)
 x(1,2)=coords(1)
 x(2,2)=coords(2)
 x(1,3)=coords(1)+1.0d0
 x(2,3)=coords(2)
 id(1,1)=1
 id(2,1)=2
 id(1,2)=1
 id(2,2)=2
 id(1,3)=1
 id(2,3)=2
c
c routine input
c

SR.16.12645 - 41 - Unrestricted

 time0=tim(2)
 time=tim(2)+dtim
 u0(1,2)=stran(1)
 u0(2,2)=stran(2)
 u(1,2)=stran(1)+dstran(1)
 u(2,2)=stran(2)+dstran(2)
 ub_l(1,2)=(u(1,2)-u0(1,2))/dtim
 ub_l(2,2)=(u(2,2)-u0(2,2))/dtim
c
c call element 17 routine
c
 call GENELKP_17(AELPAR17,AELPROP17,
 & ELK17,ELP17,ELP_L17,
 & ID,IELPAR17,IELPROP17,
 & IEN,LM,
 & U,UB_L,U0,X,
 & IEL,IELFLAG,IGRP,ISTEP,NAELPAR17,NAELPROP17,NDOF,NDOF4BC,
 & NELDOF,NELDOFI,
 & NEN,NIELPAR17,NIELPROP17,NNODES,NSD,TIME,TIME0)
c
c call element 27 routine
c
 if(n27.gt.0)
 &call GENELKP_27(AELPAR27,AELPROP27,
 & ELK27,ELP27,ELP_L27,
 & ID,IELPAR27,IELPROP27,
 & IEN,LM,
 & U,UB_L,U0,X,
 & IEL,IELFLAG,IGRP,ISTEP,NAELPAR27,NAELPROP27,NDOF,NDOF4BC,
 & NELDOF,NELDOFI,
 & NEN,NIELPAR27,NIELPROP27,NNODES,NSD,TIME,TIME0)
c
c return stiffness matrix
c
 DDSDDE(1,2)=0.0
 DDSDDE(2,1)=0.0
 DDSDDE(1,1)=elk17(1,1)
 DDSDDE(2,2)=elk17(2,2)+elk27(1,1)
c
c return forces
c
 STRESS(1)=-elp17(1)
 STRESS(2)=-elp17(2)-elp27(1)
c
c store statevarables
c
 is=0
 do i=1,naelpar17
 statev(i)=aelpar17(i)
 end do
 is=is+naelpar17
 do i=1,nielpar17
 statev(is+i)=float(ielpar17(i))
 end do
 is=is+nielpar17
 if(n27.gt.0) then
 do i=1,naelpar27
 statev(is+i)=aelpar27(i)
 end do
 is=is+naelpar27
 do i=1,nielpar27
 statev(is+i)=float(ielpar27(i))
 end do
 is=is+nielpar27
 end if
 statev(is+1)=xinit
 is=is+1
C
 RETURN
 END
c--
 logical function LF_INDIC(i,j)
c Ruben's modified version for ABAQUS:
c
c allow all:
 lf_indic=.true.
c don't print

SR.16.12645 - 42 - Unrestricted

 if(j.eq.3) lf_indic=.false.
c don't initialize each time
 if(j.eq.6) lf_indic=.false.
c special: i=j=6 initilize once
 if(i.eq.j) lf_indic=.true.
 return
 end
c--
c Routine belows are unmodified SIEP NPEX routines
c--
C
 SUBROUTINE GENELKP_27(AELPAR,AELPROP,
 & ELK,ELP,ELP_L,
 & ID,IELPAR,IELPROP,
 & IEN,LM,
 & U,UB_L,U0,X,
 & IEL,IELFLAG,IGRP,ISTEP,NAELPAR,NAELPROP,NDOF,NDOF4BC,
 & NELDOF,NELDOFI,
 & NEN,NIELPAR,NIELPROP,NNODES,NSD,TIME,TIME0)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION AELPAR(NAELPAR),AELPROP(NAELPROP),
 & ELK(NELDOF,NELDOF),ELP(NELDOF),ELP_L(NELDOF),
 & ID(NDOF4BC,NNODES),IELPAR(NIELPAR),IELPROP(NIELPROP),
 & IEN(NEN),LM(NELDOF),
 & U(NDOF,NNODES),UB_L(NDOF,NNODES),U0(NDOF,NNODES),X(NSD,NNODES)
C
C Local declarations:
 ALLOCATABLE
 & BV(:,:),BX(:,:),BVL(:), !berm resistances & locations
 & VQV(:),QQV(:), !Q-V relation
 & UQUM(:),QQUM(:), !Q-UM relation
 & UCRU(:),RCRU(:), !CR-U relation
 & USRU(:),RSRU(:) !SR-U relation
 LOGICAL LF_INDIC,P_TOWARDS_B
 DIMENSION NEB(2)
C
C Recover element properties from IELPROP & AELPROP, & store locally:
 MI=1
 NNINC=IELPROP(MI)
 MI=MI+1
 IDOF=IELPROP(MI)
 MI=MI+1
 NB=IELPROP(MI)
 MI=MI+1
 NQV=IELPROP(MI)
 MI=MI+1
 NQUM=IELPROP(MI)
 MI=MI+1
 NCRU=IELPROP(MI)
 MI=MI+1
 NSRU=IELPROP(MI)
 MI=MI+1
 ALLOCATE(!user-specified function data
 & VQV(NQV),QQV(NQV), !Q-V relation
 & UQUM(NQUM),QQUM(NQUM), !Q-UM relation
 & UCRU(NCRU),RCRU(NCRU), !CR-U relation
 & USRU(NSRU),RSRU(NSRU)) !SR-U relation
 MA=1
 QINIT=AELPROP(MA)
 MA=MA+1
 CALL DUPA2B(AELPROP(MA),VQV,NQV)
 MA=MA+NQV
 CALL DUPA2B(AELPROP(MA),QQV,NQV)
 MA=MA+NQV
 CALL DUPA2B(AELPROP(MA),UQUM,NQUM)
 MA=MA+NQUM
 CALL DUPA2B(AELPROP(MA),QQUM,NQUM)
 MA=MA+NQUM
 CALL DUPA2B(AELPROP(MA),UCRU,NCRU)
 MA=MA+NCRU
 CALL DUPA2B(AELPROP(MA),RCRU,NCRU)
 MA=MA+NCRU
 CALL DUPA2B(AELPROP(MA),USRU,NSRU)
 MA=MA+NSRU
 CALL DUPA2B(AELPROP(MA),RSRU,NSRU)
 MA=MA+NSRU
 !Derived element properties:

SR.16.12645 - 43 - Unrestricted

 QEQUIL=RCRU(NCRU)
 UEQUIL=MAX(UCRU(NCRU),USRU(NSRU)) !as good as infinity
C
C Recover element parameters & store them locally:
 NB2=NB+NB
 NB4=NB2+NB2
 ALLOCATE(BV(NB,2),BX(NB,2),BVL(2))
 CALL DUPA2B(AELPAR(1),BV,NB2)
 CALL DUPA2B(AELPAR(NB2+1),BX,NB2)
 CALL DUPA2B(AELPAR(NB4+1),BVL,2)
 CALL DUIA2B(IELPAR(1),NEB,2)
C
C Form LM, UELB_L, and NELDOFI:
 INODE=IEN(1)
 IEQ=ID(IDOF,INODE)
 LM(1)=IEQ
 UELB_L=UB_L(IDOF,INODE)
 NELDOFI=1
C
C Displacements & Coordinates:
 UU=U(IDOF,INODE)
 UU0=U0(IDOF,INODE)
 INODE2=INODE-NNINC
 INODE3=INODE+NNINC
 CLL=0.5D0*ABS(X(1,INODE3)-X(1,INODE2)) !tributary length
 XX=X(1,INODE)
C
C Initialise element parameters, if appropriate:
 IF(LF_INDIC(IELFLAG,6)) THEN
 VINIT=AINTERP(QINIT,QQV,VQV,NQV,0)
 BV=0.D0 !all elements of array
 BX=0.D0 !all elements of array
 DO J=1,2
 BV(1,J)=VINIT
 BX(1,J)=UU0
 NEB(J)=1
 ENDDO
 CALL DUPB2A(AELPAR(1),BV,NB2)
 CALL DUPB2A(AELPAR(NB2+1),BX,NB2)
 CALL DUPB2A(AELPAR(NB4+1),BVL,2)
 CALL DUIB2A(IELPAR(1),NEB,2)
 IF(IELFLAG.EQ.2**6) RETURN
 ENDIF
C
C Step 1) Identify direction of motion. If this has changed,
C create new berms with zero volume, & shift existing ones:
 IF(UU.GT.UU0) THEN
 JDIR=2
 GXI=1.D0
 ELSE
 JDIR=1
 GXI=-1.D0
 ENDIF
 IF(GXI*(BX(1,JDIR)-UU0).GT.0.D0) THEN
C reversal of slip direction; create new berm
 NEB0=NEB(JDIR)
 IF(NEB0.EQ.NB) THEN
 BVL(JDIR)=BVL(JDIR)+BV(NB,JDIR)
 ELSE
 NEB(JDIR)=NEB0+1
 ENDIF
 DO I=NEB(JDIR),2,-1
 BV(I,JDIR)=BV(I-1,JDIR)
 BX(I,JDIR)=BX(I-1,JDIR)
 ENDDO
 BV(1,JDIR)=0.D0
 BX(1,JDIR)=UU0
 ENDIF
C
C Steps 2-5) Resistance, stiffness & update:
 SS=0.D0 !soil resistance per unit length of pipe
 DSDU=0.D0 !corresponding stiffness
 GXI=1.D0
 DO J=1,2 !sides
 GXI=-GXI
 QPP0=0.D0
 UPP0=0.D0

SR.16.12645 - 44 - Unrestricted

 P_TOWARDS_B=GXI*(UU-UU0).GT.0.D0 !true if pipe moves towards berm
 IF(P_TOWARDS_B) THEN
 XB0=UU0 !Berms on side of displ increment
 ELSE
 XB0=UU !Berms on opposite side to displ increment
 XB0_U=1.D0
 UPP0_U=0.D0
 ENDIF
 IG=0
 DO I=1,NEB(J) !berms on Jth side
 XB1=BX(I,J)
c*ruben:
c*ruben: This is the only NPEX element code change:
c*ruben: due to the large displacement formulation the program can violate
c*ruben: the check below slightly. The check has been switched off.
c*ruben:
c*ruben: CALL CHKRMIN(gxi*(xb1-xb0),0.d0,"nelmt27a",8) !temp check logic code (tclc)
 UP=UPP0+GXI*(XB1-XB0)
 IF(QPP0.GT.QEQUIL) THEN
 QP=AINTERP(UP,UCRU,RCRU,NCRU,0)
 ELSE IF(QPP0.LT.QEQUIL) THEN
 QP=AINTERP(UP,USRU,RSRU,NSRU,0)
 ELSE
 QP=QEQUIL
 ENDIF
 VP=AINTERP(QP,QQV,VQV,NQV,0)
 VPP=VP+BV(I,J)
 QPP=AINTERP(VPP,VQV,QQV,NQV,0)
 IF(QPP.GT.QEQUIL) THEN
 UPP=AINTERP(QPP,RCRU,UCRU,NCRU,0)
 ELSE IF(QPP.LT.QEQUIL) THEN
 UPP=AINTERP(QPP,RSRU,USRU,NSRU,0)
 ELSE
 UPP=UEQUIL
 ENDIF
 IF(GXI*(UU-XB1).GT.0.D0) THEN
 !Berm is engulfed
 IG=I
 QPPG=QPP
 UPPG=UPP
 XBG=XB1
 ELSE
 !Berm engaged or inactive
 UM=AINTERP(QPP,QQUM,UQUM,NQUM,0) !mob displ
 XM=XB1-GXI*UM !activation location
 IF(.NOT.P_TOWARDS_B) THEN
 !Address complications in calculation of consistent tangent
 !for engaged berms the pipe is moving away from.
 !What follows is essentially a differentiation of the code
 !above to calculate the resistance force.
 UP_U=UPP0_U-GXI*XB0_U
 IF(QPP0.GT.QEQUIL) THEN
 QP_U=AINTERP(UP,UCRU,RCRU,NCRU,1)*UP_U
 ELSE IF(QPP0.LT.QEQUIL) THEN
 QP_U=AINTERP(UP,USRU,RSRU,NSRU,1)*UP_U
 ELSE
 QP_U=0.D0
 ENDIF
 VP_U=AINTERP(QP,QQV,VQV,NQV,1)*QP_U
 VPP_U=VP_U
 QPP_U=AINTERP(VPP,VQV,QQV,NQV,1)*VPP_U
 IF(QPP.GT.QEQUIL) THEN
 UPP_U=AINTERP(QPP,RCRU,UCRU,NCRU,1)*QPP_U
 ELSE IF(QPP.LT.QEQUIL) THEN
 UPP_U=AINTERP(QPP,RSRU,USRU,NSRU,1)*QPP_U
 ELSE
 UPP_U=0.D0
 ENDIF
 UPP0_U=UPP_U
 XB0_U=0.D0
 ENDIF
 IF(GXI*(UU-XM).GT.0.D0) THEN
 !Berm is engaged (i.e. active, but not engulfed)
 SKB=(QPP-QP)/UM
 SS=SS+SKB*(UU-XM)
 IF(P_TOWARDS_B) THEN
 DSDU=DSDU+SKB

SR.16.12645 - 45 - Unrestricted

 ELSE
 UM_U=AINTERP(QPP,QQUM,UQUM,NQUM,1)*QPP_U
 XM_U=-GXI*UM_U
 SKB_U=((QPP_U-QP_U)-(QPP-QP)*UM_U/UM)/UM
 DSDU=DSDU+SKB*(1.D0-XM_U)+SKB_U*(UU-XM)
 ENDIF
 ENDIF
 ENDIF
 QPP0=QPP
 UPP0=UPP
 XB0=XB1
 ENDDO
 !Update last engulfed berm:
 IF(IG.GT.0) THEN
 UPP=UPPG+GXI*(UU-XBG)
 IF(QPPG.GT.QEQUIL) THEN
 QPP=AINTERP(UPP,UCRU,RCRU,NCRU,0)
 QU1=AINTERP(UPP,UCRU,RCRU,NCRU,1)
 ELSE IF(QPPG.LT.QEQUIL) THEN
 QPP=AINTERP(UPP,USRU,RSRU,NSRU,0)
 QU1=AINTERP(UPP,USRU,RSRU,NSRU,1)
 ELSE
 QPP=QEQUIL
 QU1=0.D0
 ENDIF
 DSDU=DSDU+QU1 !stiffness contribution from sliding berm
 SS=SS+GXI*QPP !resistance contribution from sliding berm
 VPP=AINTERP(QPP,QQV,VQV,NQV,0)
 !Let last engulfed berm become current sliding berm:
 BV(IG,J)=VPP
 BX(IG,J)=UU
 IF(IG.GT.1) THEN !Re-number berms
 NEB(J)=NEB(J)-IG+1
 DO I=1,NEB(J)
 II=IG+I-1
 BV(I,J)=BV(II,J)
 BX(I,J)=BX(II,J)
 ENDDO
 ENDIF
 !Not necessary to zero no-longer-existing berms.
 ENDIF
 ENDDO
 ELP(1)=-SS*CLL
C
C Compute ELK & ELP_L if apropriate (uses consistent tangent):
 IF(LF_INDIC(IELFLAG,1)) THEN
 ELK(1,1)=DSDU*CLL
 ELP_L(1)=-ELK(1,1)*UELB_L
 ENDIF !LF_INDIC(IELFLAG,1))
C
C Update element parameters if apropriate:
 IF(LF_INDIC(IELFLAG,2)) THEN
 CALL DUPB2A(AELPAR(1),BV,NB2)
 CALL DUPB2A(AELPAR(NB2+1),BX,NB2)
 CALL DUPB2A(AELPAR(NB4+1),BVL,2)
 CALL DUIB2A(IELPAR(1),NEB,2)
 ENDIF !LF_INDIC(IELFLAG,2)
C
C Print stresses in element:
 IF(LF_INDIC(IELFLAG,3)) THEN
 WRITE(6,"(' IEL=',I6,' X=',G13.4,' U=',G13.4,' S=',G13.4)")
 & IEL,XX,UU,SS
 ENDIF !LF_INDIC(IELFLAG,3)
 RETURN
 END
C
C---
C
 SUBROUTINE GENELKP_17(AELPAR,AELPROP,
 & ELK,ELP,ELP_L,
 & ID,IELPAR,IELPROP,
 & IEN,LM,
 & U,UB_L,U0,X,
 & IEL,IELFLAG,IGRP,ISTEP,NAELPAR,NAELPROP,NDOF,NDOF4BC,
 & NELDOF,NELDOFI,
 & NEN,NIELPAR,NIELPROP,NNODES,NSD,TIME,TIME0)
 IMPLICIT REAL*8 (A-H,O-Z)

SR.16.12645 - 46 - Unrestricted

 DIMENSION AELPAR(NAELPAR),AELPROP(NAELPROP),
 & ELK(NELDOF,NELDOF),ELP(NELDOF),ELP_L(NELDOF),
 & ID(NDOF4BC,NNODES),IELPAR(NIELPAR),IELPROP(NIELPROP),
 & IEN(NEN),LM(NELDOF),
 & U(NDOF,NNODES),UB_L(NDOF,NNODES),U0(NDOF,NNODES),X(NSD,NNODES)
C
C Local declarations:
 LOGICAL LF_INDIC,PLASTIC_LOADING,UNCOUPLED !26.3.2000
 DIMENSION UELB_L(2)
C
C Initialise element parameters, if appropriate:
 IF(LF_INDIC(IELFLAG,6)) THEN
 IF(NAELPAR.GT.0) CALL CLEAR(AELPAR,NAELPAR)
 IF(NIELPAR.GT.0) CALL ICLEAR(IELPAR,NIELPAR)
 IF(IELFLAG.EQ.2**6) RETURN
 ENDIF
C
C Form LM, UELB_L, and NELDOFI:
 INODE=IEN(1)
 DO J=1,2 !element dofs
 IEQ=ID(J,INODE)
 LM(J)=IEQ
 UELB_L(J)=UB_L(J,INODE)
 ENDDO
 NELDOFI=2
C
C Recover element properties:
 YY1=AELPROP(1)
 YY2=AELPROP(2)
 CKK1=AELPROP(3)
 CKK2=AELPROP(4)
 NNINC=IELPROP(1) !node number increment for element length
 YSQ1=YY1*YY1
 YSQ2=YY2*YY2
 UNCOUPLED=YY2.LT.0. !26.3.2000
 YY2=ABS(YY2) !26.3.2000
C
C Recover Element Parameters:
 UPL1=AELPAR(1)
 UPL2=AELPAR(2)
C
C Displacements & Coordinates:
 UU1=U(1,INODE) !displ in x-direction or u-displ
 UU2=U(2,INODE) !displ in y-direction or v-displ
 INODE2=INODE-NNINC
 INODE3=INODE+NNINC
 CLL=0.5D0*ABS(X(1,INODE3)-X(1,INODE2)) !tributary length
C
C Uncoupled case:
 IF(UNCOUPLED) THEN !26.3.2000 block that follows
C
C Calculate ELK, ELP & ELP_L: (uncoupled case)
 ELK(1,2)=0.
 ELK(2,1)=0.
 PLASTIC_LOADING=.FALSE.
C Axial direction (1):
 SEL1=CKK1*(UU1-UPL1)
 IF(ABS(SEL1).GT.YY1) THEN
 PLASTIC_LOADING=.TRUE.
 SS1=SIGN(YY1,SEL1)
 ELP(1)=-CLL*SS1
 ELK(1,1)=0.
 ELP_L(1)=0.
 UPL1=UU1-SS1/CKK1
 ELSE
 SS1=SEL1
 ELP(1)=-CLL*SS1
 ELK(1,1)=CLL*CKK1
 ELP_L(1)=-ELK(1,1)*UELB_L(1)
 ENDIF
C Transverse direction (2):
 SEL2=CKK2*(UU2-UPL2)
 IF(ABS(SEL2).GT.YY2) THEN
 PLASTIC_LOADING=.TRUE.
 SS2=SIGN(YY2,SEL2)
 ELP(2)=-CLL*SS2
 ELK(2,2)=0.

SR.16.12645 - 47 - Unrestricted

 ELP_L(2)=0.
 UPL2=UU2-SS2/CKK2
 ELSE
 SS2=SEL2
 ELP(2)=-CLL*SS2
 ELK(2,2)=CLL*CKK2
 ELP_L(2)=-ELK(2,2)*UELB_L(2)
 ENDIF
C
C Update element parameters if apropriate:
 IF(LF_INDIC(IELFLAG,2)) THEN
 AELPAR(1)=UPL1
 AELPAR(2)=UPL2
 ENDIF !LF_INDIC(IELFLAG,2)
C
C Print stresses in element:
 IF(LF_INDIC(IELFLAG,3)) THEN
 XX1=X(1,INODE) !initial x-coordinate
 WRITE(6,"(' IEL=',I6,' X=',G13.4,' SS1=',G13.4,
 &' SS2=',G13.4,' PL=',L1)")
 & IEL,XX1,SS1,SS2,PLASTIC_LOADING
 ENDIF !LF_INDIC(IELFLAG,3)
 RETURN
 ENDIF !End uncoupled case. 26.3.2000
C
C Compute ELP:
 SEL1=CKK1*(UU1-UPL1)
 SEL2=CKK2*(UU2-UPL2)
 RR1=SEL1/YSQ1
 RR2=SEL2/YSQ2
 TAU=SQRT(SEL1*RR1+SEL2*RR2)
 PLASTIC_LOADING=TAU.GT.1.
 IF(PLASTIC_LOADING) THEN
 DLAMBDA=0.D0
 TAUP=-CKK1*RR1*RR1-CKK2*RR2*RR2
 DO ITER=1,1000
 DLAMBDA=DLAMBDA-(TAU-1.)/TAUP
 QQ1=1.+CKK1*DLAMBDA/YSQ1
 QQ2=1.+CKK2*DLAMBDA/YSQ2
 SS1=SEL1/QQ1
 SS2=SEL2/QQ2
 RR1=SS1/YSQ1
 RR2=SS2/YSQ2
 TAU=SQRT(SS1*RR1+SS2*RR2)
 TAUP=-RR1*RR1*CKK1/QQ1-RR2*RR2*CKK2/QQ2
 IF(ABS(TAU-1.).LT.1.D-13) GO TO 701
 ENDDO
 WRITE(6,*) " No Convergence in nelmt17 state calculations."
 STOP
 701 CONTINUE !Iterations converged
 ELSE
 SS1=SEL1
 SS2=SEL2
 ENDIF
 ELP(1)=-CLL*SS1
 ELP(2)=-CLL*SS2
C
C Compute ELK & ELP_L if apropriate (uses consistent tangent):
 IF(LF_INDIC(IELFLAG,1)) THEN
 IF(PLASTIC_LOADING) THEN
 TST1=CKK1/QQ1
 TST2=CKK2/QQ2
 RT1=RR1*TST1
 RT2=RR2*TST2
 ELK(1,1)=CLL*(TST1+RT1*RT1/TAUP)
 ELK(1,2)=CLL*RT1*RT2/TAUP
 ELK(2,1)=ELK(1,2)
 ELK(2,2)=CLL*(TST2+RT2*RT2/TAUP)
 ELSE
 ELK(1,1)=CLL*CKK1
 ELK(1,2)=0.
 ELK(2,1)=0.
 ELK(2,2)=CLL*CKK2
 ENDIF
 DO I=1,NELDOFI
 TST1=0.
 DO J=1,NELDOFI

SR.16.12645 - 48 - Unrestricted

 TST1=TST1- ELK(I,J)*UELB_L(J)
 ENDDO
 ELP_L(I)=TST1
 ENDDO
 ENDIF !LF_INDIC(IELFLAG,1))
C
C Update element parameters if apropriate:
 IF(LF_INDIC(IELFLAG,2)) THEN
 IF(PLASTIC_LOADING) THEN
 UPL1=UPL1+RR1*DLAMBDA
 UPL2=UPL2+RR2*DLAMBDA
 AELPAR(1)=UPL1
 AELPAR(2)=UPL2
 ENDIF
 ENDIF !LF_INDIC(IELFLAG,2)
C
C Print stresses in element:
 IF(LF_INDIC(IELFLAG,3)) THEN
 XX1=X(1,INODE) !initial x-coordinate
 WRITE(6,"(' IEL=',I6,' X=',G13.4,' SS1=',G13.4,
 &' SS2=',G13.4,' PL=',L1)")
 & IEL,XX1,SS1,SS2,PLASTIC_LOADING
 ENDIF !LF_INDIC(IELFLAG,3)
 RETURN
 END
C
C Log of Changes
C 29 Jan 2000 Implementation started, with a copy of nelmt16.
C 26 March 2000 added possibility of no coupling.
C
c--
 SUBROUTINE DUPA2B(A,B,N)
 !DUPlicate real array
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(N),B(N)
 DO 1 I=1,N
 1 B(I)=A(I)
 RETURN
 END
C
 SUBROUTINE DUPB2A(A,B,N)
 !DUPlicate real array
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(N),B(N)
 DO 1 I=1,N
 1 A(I)=B(I)
 RETURN
 END
C
 SUBROUTINE DUIA2B(IA,IB,N)
 !DUplicate Integer array
 DIMENSION IA(N),IB(N)
 DO 1 I=1,N
 1 IB(I)=IA(I)
 RETURN
 END
C
 SUBROUTINE DUIB2A(IA,IB,N)
 !DUplicate Integer array
 DIMENSION IA(N),IB(N)
 DO 1 I=1,N
 1 IA(I)=IB(I)
 RETURN
 END
C
 SUBROUTINE CHKRMIN(A,AMIN,STRING,NCHARS)
 IMPLICIT REAL*8 (A-H,O-Z)
C Check that A does not exceed AMIN. Stop if it does.
 CHARACTER*1 STRING(NCHARS)
 IF(A.LT.AMIN) THEN
 WRITE(6,*) ' Error detected by CHKREAL:'
 WRITE(6,*) ' A=',A,' value of integer'
 WRITE(6,*) ' AMIN=',AMIN,' MINimum value'
 WRITE(6,*) STRING
 STOP
 ENDIF
 RETURN

SR.16.12645 - 49 - Unrestricted

 END
C
 subroutine clear(a,m)
 implicit double precision (a-h,o-z)
 dimension a(M)
 do 100 i=1,m
 a(i) = 0.
 100 continue
 return
 end
c
 subroutine iclear(ia,m)
 dimension ia(M)
 do i=1,m
 ia(i) = 0
 enddo
 return
 end
c--
 SUBROUTINE CHKINT(NN,NNMAX,STRING,NCHARS)
C Check integer, NN
 CHARACTER*1 STRING(NCHARS)
 IF(NN.GT.NNMAX) THEN
 WRITE(6,*) ' Error detected in CHKINT (Check integer):'
 WRITE(6,*) ' NN=',NN,' value of integer'
 WRITE(6,*) ' NNMAX=',' maximum value'
 WRITE(6,*) STRING
 STOP
 ENDIF
 RETURN
 END
C
c--
 DOUBLE PRECISION FUNCTION AINTERP(X,XX,YY,NPTS,NDIFF)
C Function for linear interpolation from a look-up table.
C Uses extrapolation if argument TT is outside range [XX(1),XX(NPTS)]
C XX values must be monotonic (increasing or decreasing)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION XX(NPTS),YY(NPTS)
 N1=1
 N2=NPTS
 TT=X
 X1=XX(N1)
 X2=XX(N2)
 GXI=SIGN(1.D0,X2-X1)
 TT=GXI*TT
 X1=GXI*X1
 X2=GXI*X2
 IF(TT.GE.X2) THEN
 N1=NPTS-1
 X1=GXI*XX(N1)
 ELSE IF(TT.LE.X1) THEN
 N2=2
 X2=GXI*XX(2)
 ELSE
 DO WHILE(N2-N1.GT.1)
 NM=(N2+N1)/2
 XM=GXI*XX(NM)
 IF(TT.GT.XM) THEN
 N1=NM
 X1=XM
 ELSE
 N2=NM
 X2=XM
 ENDIF
 ENDDO
 ENDIF
 IF(NDIFF.EQ.0) THEN
 AINTERP=YY(N1)+(YY(N2)-YY(N1))*(TT-X1)/(X2-X1)
 ELSE IF(NDIFF.EQ.1) THEN
 AINTERP=GXI*(YY(N2)-YY(N1))/(X2-X1)
 ELSE
 AINTERP=0.D0
 ENDIF
 RETURN
 END
C

SR.16.12645 - 50 - Unrestricted

C History of Development
C This history entry added to file dated 1997.
C 3 July 2004: generalised so that program can handle nonotonically
C decreasing as well as monotonically increasing values in the XX
C array.
c--
c--
c--

SR.16.12645 - 51 - Unrestricted

The copyright of this document is vested in Shell International Exploration and Production B.V., The Hague, The
Netherlands. All rights reserved.
Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any
form or by any means (electronic, mechanical, reprographic, recording or otherwise) without the prior written consent of
the copyright owner.

	SUMMARY
	TABLE OF CONTENTS
	INTRODUCTION
	2. MODEL DESCRIPTION
	2.1. Description of the Friction Model
	2.1.1. Isotropic Friction Model
	2.1.2. Anisotropic Friction Model

	2.2. Mathematical Formulation of the Berms Model
	2.2.1. Description of the Berms Model
	2.2.2. Formulation of the Berms Model
	2.2.3. Implementation for a Finite Increment (u of the Berm Model
	2.2.4. Axial and Lateral Coupling of the Berm Model
	2.2.5. Implementation Considerations of the Berm Model

	3. COMPUTER CODE
	4. EXAMPLE SOLUTIONS
	4.1. Definition of Model
	4.2. Results

	5. CONCLUSIONS
	6. REFERENCES
	APPENDIX 1. USER’S GUIDE: BERM FORMATION MODEL
	APPENDIX 2. INPUT EXAMPLES: BERM FORMATION MODEL
	APPENDIX 3. SOURCE CODE: BERM FORMATION MODEL

